To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The invasive sabellid Branchiomma bairdi (McIntosh, 1885) was collected in the Estany des Peix lagoon (Formentera Island, Balearic Sea, Western Mediterranean). This species is native to Bermuda (Western Atlantic Ocean), being widely distributed through the Caribbean Sea. However, it has been described as invasive worldwide, being also present in the Indo-Pacific region, the Eastern Atlantic Ocean and the Mediterranean Sea. We here provide the first record of the species for the Balearic Sea, together with a comparison to other morphologically similar alien species, Branchiomma boholense (Grube, 1878), which is supposed to have also been introduced in the Mediterranean basin. We also include comprehensive taxonomic descriptions of both taxa based on the type material, a dichotomous key for the Mediterranean species of Branchiomma and hypothesize the most likely way of introduction of B. bairdi in the Balearic region.
Baited trap or pot fisheries are considered to have relatively few wider ecosystem effects on the marine environment, particularly when compared with towed mobile fishing gear. However, this assumption is rarely tested in the field. This study aimed to determine the composition of non-target species that occur in crustacean pots and to assess spatial and temporal differences in catches in the waters around the Isle of Man, Irish Sea. The data were collected using fishery independent surveys and a questionnaire study. Based on fishery independent surveys, a total of five taxonomic groups and 43 species occurred as by-catch. The dominant by-catch species was velvet crab Necora puber. The by-catch per unit effort (BPUE) for all of the non-target species was low particularly in comparison to towed bottom gear fisheries around the Isle of Man. BPUE of species composition varied considerably between different locations around the Isle of Man. The results of both the fishery independent and questionnaire data suggested that the by-catch rates varied with season with peak BPUE occurring in spring which then declined into autumn and winter. By-catch composition did not decrease significantly with an increasing target species catch. Overall, by-catch was low relative to target species catch which may be partially attributable to the use of escape panels in pot fisheries in the Isle of Man.
The study of copepod assemblages indicated the presence of 22 species and 12 families in the southern coast of Sfax, 20 species and 13 families in the northern coast and 14 species and 8 families in the Ghannouch area, with a dominance of Oithonidae (79, 51 and 43% in the southern, northern and Ghannouch coasts, respectively). The relative abundance and the richness diversity of Oithonidae were found to be the most relevant indicators of anthropogenic pollution. Oithona nana, Euterpina acutifrons and Acartia clausi differed significantly in abundance between these three areas under differing degrees of pollution. The study of the structure, composition and density of the copepod fauna showed that the southern coast was a pollution-resistant ecosystem (H′ = 1.49 ± 0.33 bits ind−1; 22 species; density = 51.375 ± 4.340 × 103 ind m−3) followed by Ghannouch area (H′ = 1.74 ± 0.28 bits ind−1; 15 species; density = 11.979 ± 5.651 × 103 ind m−3) and the northern coast, considered as a restored area (H′ = 1.95 ± 0.26 bits ind−1; 21 species; density = 6.516 ± 4.304 × 103 ind m−3). The three ecosystems can thus be classified according to their degree of resistance to the anthropogenic inputs based on the results of the physico-chemical parameters and the species diversity as follows: southern coast > Ghannouch area > northern coast.
In order to confirm the genetic relationship between the Yellow Sea and East China Sea populations of mantis shrimps Oratosquilla oratoria, fragments of mitochondrial DNA COI gene samples were analysed. A total of 212 individuals from nine localities in the East China Sea and Yellow Sea were collected and 108 haplotypes were detected. Neighbour-joining analysis revealed a complete genetic break between the Yellow Sea and East China Sea, which was consistent with the previous mtDNA 16S rRNA. Pleistocene isolation and the current physical barrier were responsible for the complete genetic break between the East China Sea and Yellow Sea. Furthermore, local adaptation in the COI gene may also be contributed to by the genetic differentiation between the populations of the Yellow Sea and East China. The different Ka/Ks ratios between the two clades may reflect different selection pressures and local adaptation on the fragment of COI gene.
The parasitic fauna of the small-spotted catshark, Scyliorhinus canicula in the north-eastern Aegean Sea was investigated. Twenty-one out of the 52 (prevalence 40.4%) specimens collected were found infected with parasites; an arthropod and two nematode genera. Seven specimens (prevalence 13.5%) were infected by a Neoalbionella sp. copepod. Ten and 14 specimens were infected by the nematodes Proleptus obtusus (prevalence 19.2%) and Anisakis sp. (prevalence 26.9%), respectively. Female S. canicula specimens were significantly more heavily infected during autumn and when the whole sampling period is considered. Nematode infection was significantly related to season, becoming progressively heavier from spring to autumn. No correlation was found between TL of specimens and number of parasites for males or females, irrespective of gender. The present study provided a first record of Neoalbionella sp., P. obtusus and Anisakis sp. infections of S. canicula in the north-eastern Mediterranean. The lower prevalence of Proleptus obtusus and the higher prevalence of Anisakis sp. infection recorded in this study may be due to prey availability and parasite populations in this locality.
Recent developments in behavioural neuroscience and genomics are providing exciting new tools for understanding mammalian evolution. Drawing on a range of disciplines including genomic reprogramming, immunology, genomic imprinting, placentation and brain development, this book examines the leading role played by the mother's genome and epigenome in the successful evolutionary progression of humans from ancestral mammals. Keverne begins by discussing the historic context of the perceived dominance of males and the patriline, before arguing that it is instead the matriline that exerts the dominant influence in shaping the evolution of our brain development and behaviour, especially the co-adaptive development of brain and placenta. Presenting a balanced outlook on the development of sex differences and an alternative to traditional views, Beyond Sex Differences will be of interest to anyone studying and researching mother and infant development.
Large-scale green tides of Ulva prolifera occur repeatedly in the Yellow Sea, and the microscopic propagules of U. prolifera play a critical role during the development of green tides. Ulva prolifera propagules and microalgae are both present in seawater and share similar niches, but their potential interactions are poorly understood. Nine species of microalgae were selected to study their interactions with the propagules of U. prolifera (gametes) in laboratory. The results showed that settlement of gametes could be inhibited by some microalgae, such as Alexandrium tamarense, Prorocentrum lima and Karenia mikimotoi, at the cell density of blooming (102–103 cells ml–1). Inversely, the germlings germinated from U. prolifera gametes had negative effects on the microalgae, the inhibition rate ranged from 28 to 66%. Our results demonstrated the complex interactions between microalgae and propagules of green algae, which may influence the formation of green tides and their ecological consequences in the Yellow Sea.