To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Satellite glial cells (SGCs) undergo phenotypic changes and divide the following injury into a peripheral nerve. Nerve injury, also elicits an immune response and several antigen-presenting cells are found in close proximity to SGCs. Silencing SCG-specific molecules involved in intercellular transport (Connexin 43) or glutamate recycling (glutamine synthase) can dramatically alter nociceptive responses of normal and nerve-injured rats. Transducing SGCs with glutamic acid decarboxylase can produce analgesia in models of trigeminal pain. Taken together these data suggest that SGCs may play a role in the genesis or maintenance of pain and open a range of new possibilities for curing neuropathic pain.
It has been known for some time that the somata of neurons in sensory ganglia respond to electrical or chemical stimulation and release transmitters in a Ca2+-dependent manner. The function of the somatic release has not been well delineated. A unique characteristic of the ganglia is that each neuronal soma is tightly enwrapped by satellite glial cells (SGCs). The somatic membrane of a sensory neuron rarely makes synaptic contact with another neuron. As a result, the influence of somatic release on the activity of adjacent neurons is likely to be indirect and/or slow. Recent studies of neuron–SGC interactions have demonstrated that ATP released from the somata of dorsal root ganglion neurons activates SGCs. They in turn exert complex excitatory and inhibitory modulation of neuronal activity. Thus, SGCs are actively involved in the processing of afferent information. In this review, we summarize our understanding of bidirectional communication between neuronal somata and SGCs in sensory ganglia and its possible role in afferent signaling under normal and injurious conditions. The participation of purinergic receptors is emphasized because of their dominant roles in the communication.
In sensory ganglia each nerve cell body is usually enveloped by a satellite glial cell (SGC) sheath, sharply separated from sheaths encircling adjacent neurons by connective tissue. However, following axon injury SGCs may form bridges connecting previously separate perineuronal sheaths. Each sheath consists of one or several layers of cells that overlap in a more or less complex fashion; sometimes SGCs form a perineuronal myelin sheath. SGCs are flattened mononucleate cells containing the usual cell organelles. Several ion channels, receptors and adhesion molecules have been identified in these cells. SGCs of the same sheath are usually linked by adherent and gap junctions, and are functionally coupled. Following axon injury, both the number of gap junctions and the coupling of SGCs increase markedly. The apposed plasma membranes of adjacent cells are separated by 15–20 nm gaps, which form a potential pathway, usually long and tortuous, between connective tissue and neuronal surface. The boundary between neuron and SGC sheath is usually complicated, mainly by many projections arising from the neuron. The outer surface of the SGC sheath is covered by a basal lamina. The number of SGCs enveloping a nerve cell body is proportional to the cell body volume; the volume of the SGC sheath is proportional to the volume and surface area of the nerve cell body. In old animals, both the number of SGCs and the mean volume of the SGC sheaths are significantly lower than in young adults. Furthermore, extensive portions of the neuronal surface are not covered by SGCs, exposing neurons of aged animals to damage by harmful substances.
This book provides a comprehensive view of research in lens developmental biology, emphasising technical and molecular breakthroughs. Elucidation of the mechanisms that govern lens development has enabled us to understand how the normal lens forms and how developmental processes are involved in the maintenance of its normal structure, function and growth throughout life. This knowledge is fundamental to our understanding of many lens disorders. The ocular lens has also become a model for understanding the developmental biology of more complex organ systems. In this 2004 book, leading experts in lens cell biology and development discuss lens evolution, induction, morphology, the regulation of the lens cell cycle and fiber cell differentiation, as well as lens regeneration. This book is an authoritative treatment of the subject that will serve as a reference for graduate students and research scientists in developmental biology and in the visual sciences, as well as for ophthalmologists.
It is hard to think of any significant aspect of our lives that is not influenced by what we have learned in the past. Of fundamental importance is our ability to learn the ways in which events are related to one another, called associative learning. This book provides a fresh look at associative learning theory and reviews extensively the advances made over the last twenty years. The Psychology of Associative Learning begins by establishing that the human associative learning system is rational in the sense that it accurately represents event relationships. David Shanks goes on to consider the informational basis of learning, in terms of the memorisation of instances, and discusses at length the application of connectionist models to human learning. The book concludes with an evaluation of the role of rule induction in associative learning. This will be essential reading for graduate students and final year undergraduates of psychology.
The duplicity theory of vision concerns the comparisons (both differences and similarities) and interaction between the cone and rod systems in the visual pathways, with the assumption that the cone system is active during daylight vision and the rod system functions in low light (night time). Research on this aspect of vision dates back to the 17th century and the work of Newton, and is still ongoing today. This book describes the origin and development of this fundamental theory within vision research - whilst also examining the Young–Helmholtz trichromatic colour theory, and the opponent colour theory of Hering - and presents evidence and ideas in light of modern conceptions of the theory. Written for academic researchers and graduate students, the book brings back knowledge of the tradition of duplicity theory, inspiring questions related to anatomy, comparative biology, molecular biology, photochemistry, physiology, genetics, phylogenetics and psychophysics.
In Chapter 5, we discussed the normal responses to a variety of noxious stimuli and their modulation by peripheral and central neural mechanisms. This review showed that noxious stimuli preferentially and most commonly activate a set of interconnected structures, namely the insula and secondary (SII) somatosensory cortices, anterior cingulate gyrus and thalamus. Several additional structures are also activated during normal acute pain although somewhat less frequently: the primary (SI) somatosensory cortex, components of the striatum, the cerebellum, premotor cortex, dorsolateral and orbitofrontal regions of the prefrontal cortex, and the medial midbrain in the region of the periaqueductal gray matter.
In this chapter we review the evidence that chronically painful conditions, whether of peripheral or central origin, may alter the nociceptive processing that normally follows the application of noxious or innocuous stimuli (see Chapter 7). In clinical practice and in the interpretation of the results of pain research, the assumption is often made that the perceptual abnormalities sometimes associated with chronic pain states are attributable only to changes occurring at the peripheral or spinal level. Although this assumption may be correct in most instances, functional imaging studies provide evidence to the contrary in some cases. We cannot assume that, in pathological or chronically painful conditions, information ascending through the spinothalamic tract will be processed by the same mechanisms used for acute pain; this has important clinical implications for the management of chronic pain.
Neuropathic pain is pain following a disease or injury to the nervous system, and can be categorized by the location of the causative injury. Chronic pain following injury of the peripheral nervous system, distal to the oligodendroglial cell – Schwann cell junction, can be termed deafferentation pain or peripheral neuropathic pain. Chronic pain “associated with lesions of the CNS” is termed central pain syndrome (Merskey, 1986; Bonica, 1991). There are many situations in which there is injury of both the peripheral and central nervous system, particularly with injuries of the conus medullaris. In this chapter we will consider primate neuropathic pain states, beginning with peripheral neuropathic or deafferentation syndromes, and concluding with central pain syndromes.
In general terms, both central and peripheral chronic pain syndromes have similar characteristics. These include evidence of sensory loss, ongoing pain and pain evoked by stimuli that are not normally painful (allodynia or hyperalgesia). The sensory loss and hypersensitivity are demonstrated by quantitative sensory testing (QST). In addition, a number of primate models have been developed which mimic the sensory abnormalities in patients with neuropathic pain.
Clinical characteristics of peripheral neuropathic pain
The cause of most neuropathies is based on the medical history, supported by laboratory investigations (Casey et al., 1996b). Diabetes is the most common cause of painful neuropathy. Generally, a progressive course suggests an inherited, metabolic or recurrent toxic etiology.
Nociceptors are sensory receptors that respond to stimuli that are damaging or potentially damaging to tissues (Sherrington,1906). The thresholds for activation of many nociceptors can be reached when stimuli of only moderate or non-damaging intensities are applied, but responses continue to increase as stimulus intensity is progressively increased to a level that produces overt damage. By contrast, other nociceptors respond only to intense stimuli and some may not respond at all, even to the strongest mechanical stimuli, unless they are first sensitized (Lynn and Carpenter, 1982; Meyer et al., 1991; Kress et al., 1992; Davis et al., 1993; Treede et al., 1998). The last mentioned have been called “silent nociceptors” (Schaible and Schmidt, 1985, 1988a, 1988b; Schmidt et al., 1995, 2000). Overall, if we include receptors responding to innocuous warming and cooling of the skin, there may be as many as six receptor classes specific for cooling, warming, noxious heat or cold, destructive mechanical or mixed noxious stimuli in humans and other animals.
Types of nociceptors
Nociceptors can be subdivided according to the tissue in which they are found, the size or conduction velocity of the afferent fiber supplying them and the type of stimulus that activates them. Most experimental studies of nociceptors have been performed on common laboratory animals, especially rodents and cats. Some of the most informative, however, have been made during recordings from peripheral nerves of monkeys or human subjects (reviewed in Willis and Coggeshall, 2004).
The clinical descriptions of cordotomy played a major role in elucidating the function and the anatomy of the human spinothalamic tract (STT) (Chapter 1). There are a number of other examples of surgical interventions which have informed our understanding of the pain system. In particular, the pain-related role of the cingulate gyrus is suggested by imaging studies and by the effect of cingulotomy on experimental pain (Rainville et al., 1997; Gildenberg, 2004). Similarly the role of the motor cortex in these systems has suggested the effects of stimulation on activity throughout the pain system (Brown and Barbaro, 2003; Brown, 2004; Peyron et al., 2007). The purpose of this chapter is to examine these surgical interventions in terms of the anatomy and function of structures involved in these interventions. The inclusion of procedures in this chapter is arbitrary and many other such procedures which might have been included have been excluded.
Cordotomy and myelotomy
Percutaneous cordotomy produces relief of pain by interrupting the transmission of signals in the STT from below the level of intervention (Tasker, 1988; Tasker, 2004). The anterolateral quadrant of the spinal cord has long been recognized as the location of the STT (Chapter 1). Recent findings indicate that the dorsal column system also has an important role in visceral nociception (Nauta et al., 1997; Willis et al., 1999). The STT terminates in the primate thalamus, brainstem and other structures such as the hypothalamus and amygdala whereas the dorsal column system terminates in the dorsal column nuclei (Newman et al., 1996).
Before the introduction of computerized tomographic (CT) brain imaging, studying human brain mechanisms of pain was largely limited to clinical reports and the post-mortem analysis of brain lesions. Although this approach provided important information and established the background for current investigations, these studies were usually limited by clinical descriptions of each patient's condition. Somatosensory psychophysics seldom included studies of pain and even then it was not possible to relate these observations to brain function or physiology. Because the living brain was invisible (except in the neurosurgery operating suite), research on pain mechanisms focused almost exclusively on the peripheral nervous system.
Brain CT scans introduced the opportunity to apply quantitative sensory testing to the study of living patients with visible, localized brain lesions and to begin to test hypotheses about functional localization and brain mechanisms of pain. The introduction of functional imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI; fMRI) launched a new investigational paradigm into the study of pain mechanisms. Now it is possible to go well beyond the lesion analysis method and to relate human experience, in this case using somatosensory psychophysics, directly to a surrogate measure of activity in groups of neurons at the level of visible, localized brain structure. Since the early 1990s, the number and technical sophistication of functional brain imaging studies, including those related to pain, has increased at a rate that makes it almost impossible to incorporate the results into a conceptual framework.
It is well known that much of the sensory input to the central nervous system can be modulated by centrifugally organized control systems that originate in the central nervous system (Head and Holmes, 1911; Hagbarth, 1960). The control mechanisms can be excitatory or inhibitory processes that may occur in the periphery or within the central nervous system. Inhibition can be at pre- and/or postsynaptic sites (Fig. 6.1(I)). Presynaptic inhibition at the first central synapse of a sensory pathway has the potential advantage of being able to reduce sensory input prior to wide dissemination of that sensory input within the central nervous system through the activation of interneuronal networks and multiple ascending pathways, for example, in the spinal cord (Schmidt, 1973; see Chapter 3).
Pre- and postsynaptic inhibition can have somewhat different effects on the stimulus-response curves of second-order sensory neurons, as shown in Fig. 6.1(II). Postsynaptic inhibition involves inhibitory postsynaptic potentials that sum with excitatory postsynaptic potentials (Fig. 6.1(IIA)). If there is a linear summation, the stimulus-response curve will be shifted to the right in a parallel fashion (Carstens et al., 1980). However, if the IPSP is generated in a membrane area near that in which the EPSP is generated, the excitatory current may be shunted and the slope of the stimulus-response curve reduced, causing a reduction in the gain of synaptic transmission (Fig. 6.1(IIB)). A similar reduction in gain can be produced by presynaptic inhibition.
On January 19 1911, persuaded by his colleague, the neurologist William Spiller, a Philadelphia surgeon named Edward Martin made a small transverse cut in the spinal cord of a patient suffering from severe pain caused by a tumor affecting the lower end of the spinal column. The cut, made with a thin cataract knife, was no more than 2 mm deep or wide and entered the cord some 3 mm ventral to the entry of a dorsal root in the middle thoracic region. The patient experienced much relief from what had until then been intractable pain (Spiller and Martin,1912). The operation of “chordotomie” or section of the anterolateral tracts of the spinal cord had been introduced in 1910 by Schüller in work on monkeys in which he was exploring the possibility of using the operation for the alleviation of spastic paralysis and tabetic crises in humans. Spiller argued for the procedure on the basis of clinico-pathological observations that appeared to implicate the anterolateral tracts as pathways for conduction of impulses related to pain and temperature through the spinal cord (Müller, 1871; Gowers, 1879; Spiller, 1905; Petrén, 1910). Reports of other successful cases quickly followed (Beer, 1913; Foerster, 1913) and soon, at the hands of Foerster (1913, 1927; Foerster and Gagel, 1932) in Germany and Frazier (1920) in the United States, cordotomy was to become for a time the surgical method of choice in dealing with intractable pain.
It is well understood that there are different components to the sensation of pain (Melzack and Casey,1968). The sensory-discriminative aspect of pain refers to the location, intensity and quality of the sensory experience of pain. The affective-motivational aspect of pain refers to the unpleasantness of the pain and how likely it is that it will motivate the animal to escape the pain. We refer to these different components of the pain sensation throughout this review as we examine the possibility that these different components are mediated by different structures in the brain.
The spinothalamic tract (STT) is the spinal tract projecting toward the brain which is most often associated with the sensation of pain (Price and Dubner, 1977; Willis, 1985; Price et al., 2003). Cells of origin of the STT can be divided into those which respond to low-threshold stimuli (LT cells), those which respond to stimuli across the intensive continuum into the noxious range (wide dynamic range, WDR), and those that respond only to noxious stimuli (nociceptive specific, NS). Evidence that any structure mediates the sensory aspect of pain is grouped into four lines: that the structure is connected to other structures known to demonstrate pain-related activity; that neural elements in that structure respond to noxious stimuli; that stimulation of that structure produces pain; and that interventions which interfere with the function of that structure interfere with the sensation of pain evoked by noxious stimuli (Price and Dubner, 1977).
As discussed in Chapter 2, several of the sensory pathways that ascend from the spinal cord or brainstem to higher levels of the monkey central nervous system have a nociceptive component and thus may contribute to pain sensation. Spinal cord projections with nociceptive components that ascend to the brain in the anterolateral quadrant of the spinal cord include the spinothalamic, spinoreticular, spinomesencephalic and spinohypothalamic tracts; nociceptive projections that ascend in the dorsolateral or dorsal funiculus are the spinocervical tract and the postsynaptic dorsal column pathway (see Willis and Coggeshall, 2004). Brainstem projections include the trigeminothalamic tract (Price et al., 1976).
To investigate the physiology of an individual spinal cord or brainstem neuron that belongs to one of the ascending nociceptive pathways, it is important to “identify” the neuron by showing that the axon of the individual neuron under investigation actually projects to the appropriate target (Willis and Coggeshall, 2004). Recordings from a neuron unidentified in terms of its projection can be misleading, since many unidentified neurons are likely to be interneurons, and these could be excitatory or inhibitory and might or might not influence the activity of sensory projection neurons. For instance, many spinal cord interneurons belong to neural circuits that function to control motor output (Jankowska et al., 1981; Rudomin et al., 1987).
Identification of a projection neuron is typically accomplished by demonstrating that the neuron can be activated antidromically in response to electrical stimulation in a region in which the axon of that projection neuron synapses (Trevino et al., 1973; Bryan et al., 1974; Haber et al., 1982; see Willis and Coggeshall, 2004).