To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Pour chaque entier $d=2,3,4$, il existe un corps $F$ de dimension cohomologique $1$ et une surface de del Pezzo de degré $d$ sur $F$ sans zéro-cycle de degré $1$, en particulier sans point rationnel. Les démonstrations utilisent le théorème de Merkur’ev et Suslin, le théorème de Riemann-Roch sur une surface et la formule du degré de Rost.
Nous appelons polynôme quasi-ordinaire de Laurent un polynôme unitaire $f(Y)$ dont les coefficients sont des séries de Laurent à plusieurs variables et tel que son discriminant soit le produit d’un monôme de Laurent et d’une série entière de terme constant non-nul. Si la dérivée $\partial f/\partial Y$ rendue unitaire est encore quasi-ordinaire de Laurent—ce qui peut être toujours obtenu par changement de base—nous montrons que l’on peut mesurer le contact de ses facteurs avec ceux de $f$ en fonction d’invariants discrets de $f$ qui mesurent le contact entre ses racines, codés sous la forme de l’arbre d’Eggers–Wall. Tous les calculs sont faits en termes de chaînes et de cochaînes supportées par cet arbre. Ce travail constitue une généralisation de résultats connus pour les germes de courbes planes.
We study the fundamental groups of algebraic stacks. We show that these fundamental groups carry an additional structure coming from the inertia groups. We use this additional structure to analyse geometric/topological properties of stacks. We give an explicit formula for the fundamental group of the coarse moduli space. As an application, we find an explicit formula for the fundamental group of the geometric quotient of an arbitrary algebraic group action. Also, we use these additional structures to give a necessary and sufficient for an algebraic stack to be uniformizable (i.e. quotient of an algebraic space by a finite group action).