To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study prime and maximal ideals in a polynomial ring R[X], where R is a ring with identity element. It is well-known that to study many questions we may assume Ris prime and consider just R-disjoint ideals. We give a characterizaton for an R-disjoint ideal to be prime. We study conditions under which there exists an R-disjoint ideal which is a maximal ideal and when this is the case how to determine all such maximal ideals. Finally, we prove a theorem giving several equivalent conditions for a maximal ideal to be generated by polynomials of minimal degree.
Let be an n+ 1-dimensional, complete simply connected Riemannian manifold of constant sectional curvature c and We consider the function r(·) = d(·, P0) where d stands for the distance function in and we denote by grad r the gradient of The position vector (see [1]) with origin P0 is defined as where ϕ(r)equals
Our aim in this paper is to investigate the restrictions placed on the structure of a finite group if it can be generated by subnormal T-subgroups (a T-group is a group in which every subnormal subgroup is normal). For notational convenience we denote by the class of finite groups that can be generated by subnormal T-subgroups and by the subclass of of those finite groups generated by normal T-subgroups; and for the remainder of this paper we will only consider finite groups.
It is well known that for finite dimensional algebras, “bounded representation type” implies “finite representation type”; this is the assertion of the First Brauer-Thrall Conjecture (hereafter referred to as Brauer-Thrall I), proved by Roiter [26] (see also [23]). More precisely, it states that if R is a finite dimensional algebra over a field k, such that there is a finite upper bound on the k-dimensions of the finite dimensional indecomposable right R-modules, then up to isomorphism R has only finitely many (finite dimensional) indecomposable right modules. The hypothesis and conclusion are of course left-right symmetric in this situation, because of the duality between finite dimensional left and right R-modules, given by Homk(−, k). Furthermore, it follows from finite representation type that all indecomposable R modules are finite dimensional [25].
Let k be a field, let R be a noetherian k-algebra of finite Gelfand-Kirillov dimension GK(R), and let M be a finitely generated right R-module. A standard prime factor series for M is a finite sequence of submodules 0 = N0 ⊂ N1 ⊂…⊂ Ni−1 ⊂ Ni ⊂.… ⊂ Nn = M, such that for each i the annihilator Pi = rR (Ni/Ni−1) is the unique associated prime of Ni/Ni−1 and GK(R/Pi)≤ GK(R/Pj) whenever i≤ j. The set of prime ideals arising from such a series is an invariant of M, called the set of standard primes St(M) of M. The concept, inspired by the notion of a standard affiliated series introduced by Lenagan and Warfield in [7], has been developed in [5], where it was shown that St(M) coincides with the set of all those prime ideals that are minimal over the annihilator of a nonzero submodule of M.
Choosing the most efficient statistical test of several ones that are at the disposal of the statistician is regarded as one of the basic problems of statistics. According to the classical Neyman–Pearson theory the uniformly most powerful tests are considered the best. However, it is well known that they exist merely for a narrow class of statistical models which do not fully cover the diversity of problems arising in theory and practice. One can still say that within the framework of parametric statistics this problem is not at all crucial. The point is that quite formal methods of constructing tests have been developed, for example, Bayes or likelihood ratio tests. They possess a number of remarkable properties and usually turn out to be asymptotically optimal in the sense of one or another definition of this concept.
The situation is quite different under the nonparametric approach. There exist numerous statistical tests proposed as a rule for heuristic reasons. The Kolmogorov–Smirnov and omega-square tests can serve as classical examples for goodness-of-fit testing. In other cases nonparametric procedures arise as simple substitutes of computationally complicated parametric procedures. The Wilcoxon rank test has been proposed in exactly this way. One more reason for using nonparametric tests is concerned with unreliable information on the distribution of observations in cases when it is reasonable to use, instead of the highly suitable parametric test, a nonparametric one, which is possibly less efficient but more robust with respect to changes of this distribution.
For a class of functions containing polynomials over ℤm, we give an inequality relating the cardinality of the value set to the additive order of differences of elements in that set. To do this, we find some inequalities concerning the combinatorics of substrings of sequences on finite sets which are related to an interesting matrix inequality.
Group actions on ℝ-trees may be split into different types, and in Section 1 of this paper five distinct types are defined, with one type splitting into two sub-types. For a group G acting as a group of isometries on an ℝ-tree, conditions are considered under which a subgroup or a factor group may inherit the same type of action as G. In Section 2 subgroups of finite index are considered, and in Section 3 normal subgroups and also factor groups are considered. The results obtained here, Theorems 2.1 and 3.4, allow restrictions on possible types of actions for hypercentral, hypercyclic and hyperabelian groups to be given in Theorem 3.6. In Section 4 finitely generated subgroups are considered, and this gives rise to restrictions on possible actions for groups with certain local properties. The results throughout are stated in terms of group actions on trees. Using Chiswell's construction in [3], they could equally be stated in terms of restrictions on possible types of Lyndon length functions.
The results developed by Watson [1] are interpreted to indicate how the slow viscous flow due to the rotation of a small circular cylinder in the presence of a stationary cylinder can be calculated. It is shown how the stream function is given as a combination of the force-free representations corresponding to a line rotlet and a line stokeslet outside the stationary body, plus the streaming flow past the body. The coefficients which multiply these representations are calculated by techniques already described by Watson.