To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Vo be a discrete real valuation of a field K and x an indeterminate. In 1936, MacLane [3] gave a method of constructing all real valuations of K(x) which are extensions of Vo. In this paper, we determine explicitly all rank 2 valuations of K(x) which extend Vo. One can thereby describe all rank 2 valuations of K(x, y) which are trivial on an arbitrary K; x, y being algebraically independent over the field K. The latter valuations have been considered by Zariski [5] in the case when K is an algebraically closed field of characteristic zero.
Of prime concern in this paper is the flow induced in a channel when a thermal wave moves along a boundary with topographical features. The principal result obtained is that the time-averaged flow in the channel is predominantly cellular in nature, which is qualitatively quite different from its unidirectional form when such structures are absent.
Let A = {ala2,…, an} be a finite set of (not necessarily distinct) positive integers and
be the corresponding set of multiples. My primary object here is to show that in fairly general circumstances there are significant irregularities in B(A), regarded as an ordered sequence.
Previously (Section 2.6) we explained how puzzle problems can be formulated in terms of graphs. The vertices of the graph correspond to the positions in a puzzle; the edges of the graph correspond to the possible moves from one position to another. The solution of the puzzle consists in finding a path from a given initial position to one (or possibly more) terminal or winning positions.
In dealing with these puzzles, we used undirected graphs. This was based upon the tacit assumption that the moves can be made both ways from one position to another. Such a procedure is permissible for the puzzles of the ferryman, the three jealous husbands, and the moves of the knight on the chessboard.
But for many puzzles the moves can only be made in one direction, and in this case we are compelled to use directed graphs in the representation. If some moves can be made in both directions, we can include an edge for each direction, or we can use a mixed graph in which these edges are undirected. To solve the puzzle, we must find a directed path from the initial position in the graph to the desired terminal position.
We shall illustrate these remarks by considering an ancient and familiar puzzle.
So far we have discussed a variety of uses of graphs. Applications to everyday problems and to games and puzzles were considered. Our choice of topics had the advantage that we could deal with well-known and simple concepts. In this chapter, we shall strive to make clear that graphs are closely related to (indeed, are only a different way of formulating) some of the most fundamental concepts of mathematics in general.
A mathematical system, as we usually encounter it, consists of a set of objects or elements. For instance, we deal commonly with numbers and these may belong to more or less general types; we may discuss the set of integers, the positive numbers, the rational numbers, real numbers, imaginary numbers, or complex numbers. In algebra, we are concerned with elements which can be added, subtracted, multiplied, and so on. In geometry, we ordinarily have before us a set of points or special categories of points like straight lines, circles, planes, etc. In logic, we deal with the properties of statements of various kinds.
To construct a mathematical theory we need more than these elements; we need relations between them. Let us illustrate this: in the case of numbers, we have equal numbers a and b; in formal mathematical terminology, we write a = b. We also have numbers a and b which are different, and we write a ≠ b.
As we have already explained in Section 1.4, a planar graph is a graph which can be drawn in the plane so that the edges have no intersections except at the vertices. We also gave a number of illustrations of planar graphs. In Section 1.5, we analyzed the problem of the three houses and the three wells, and explained why the corresponding graph could not be planar. The graph of the problem (Figure 1.16) can be drawn in many ways, as is possible for all graphs. When we say “the graph,” we mean any graph isomorphic to a particular graph describing the situation. Therefore, the statement “the graph in Figure 1.16 is not planar” means it has no planar isomorph. For instance, the vertices may be placed in a hexagon as in Figure 8.1. The intersection in the center is not a vertex; the edges should be considered to pass over each other at this point.
There is even a graph with only 5 vertices which is not planar—namely, the complete graph on 5 vertices (Figure 8.2). Why this graph is not planar may be made clear by reasoning similar to that used in Section 1.5 to show that the graph in Figure 8.1 (or Figure 1.16) is not planar. The vertices in any representation of the graph must lie on a cycle C in some order—say, abcdea. There is an edge eb, and in our planar graph we have the choice of putting it on the inside or the outside of C.
If a scattered compact space K is such that its ω1-th derived set K(ω1) is empty then the Banach space ℒ(K) admits an equivalent locally uniformly convex norm.
In this paper some new Opial-type integrodifferential inequalities in one variable are established. These generalize the existing ones which have a wide range of applications in the study of differential and integral equations.
For each odd prime p there is a finite regular abstract 4-dimensional polytope of type {3, 3, p}. Its cells are simplices, and its vertex figures belong to an infinite family of regular polyhedra. We also give a geometric realization for these polytopes.
We determine what is the maximum possible (by volume) portion of the three-dimensional Euclidean space that can be occupied by a family of non-overlapping congruent circular cylinders of infinite length in both directions. We show that the ratio of that portion to the whole of the space cannot exceed π/√12 and it attains π/√12 when all cylinders are parallel to each other and each of them touches six others. In the terminology of the theory of packings and coverings, we prove that the space packing density of the cylinder equals π/√12, the same as the plane packing density of the circular disk.
The usual definition for vertex-criticality with respect to the chromatic index is that a multigraph G is vertex-critical if G is Class 2, connected, and χ'(G\υ) <χ'(G) for all υ ε V(G). We consider here an allied notion, that of vertex-criticality with respect to the chromatic class–in this case G is vertex critical if G is Class 2 and connected, but G\υ is Class 1 for all υ ε V(G). We also investigate the analogues of these two notions for edge-criticality.