To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a new analytical solution of a three-dimensional atmospheric pollutant dispersion. The main idea is to subdivide vertically the planetary boundary layer into sub-layers, where the wind speed and eddy diffusivity assume average values for each sub-layer. Basically, the model is assessed and validated using data obtained from the Copenhagen diffusion and Prairie Grass experiments. Our findings show that there is a good agreement between the predicted and observed crosswind-integrated concentrations. Moreover, the calculated statistical indices are within the range of acceptable model performance.
The paper deals with the construction of explicit Nordsieck second derivative general linear methods with s stages of order p with $p=s$ and high stage order $q=p$ with inherent Runge–Kutta or quadratic stability properties. Satisfying the order and stage order conditions together with inherent stability conditions leads to methods with some free parameters, which will be used to obtain methods with a large region of absolute stability. Examples of methods with r external stages and $p=q=s=r-1$ up to order five are given, and numerical experiments in a fixed stepsize environment are presented.
Geomathematics provides a comprehensive summary of the mathematical principles behind key topics in geophysics and geodesy, covering the foundations of gravimetry, geomagnetics and seismology. Theorems and their proofs explain why physical realities in geoscience are the logical mathematical consequences of basic laws. The book also derives and analyzes the theory and numerical aspects of established systems of basis functions; and presents an algorithm for combining different types of trial functions. Topics cover inverse problems and their regularization, the Laplace/Poisson equation, boundary-value problems, foundations of potential theory, the Poisson integral formula, spherical harmonics, Legendre polynomials and functions, radial basis functions, the Biot-Savart law, decomposition theorems (orthogonal, Helmholtz, and Mie), basics of continuum mechanics, conservation laws, modelling of seismic waves, the Cauchy-Navier equation, seismic rays, and travel-time tomography. Each chapter ends with review questions, with solutions for instructors available online, providing a valuable reference for graduate students and researchers.
We study a fractional-order delayed predator-prey model with Holling–Tanner-type functional response. Mainly, by choosing the delay time $\tau $ as the bifurcation parameter, we show that Hopf bifurcation can occur as the delay time $\tau $ passes some critical values. The local stability of a positive equilibrium and the existence of the Hopf bifurcations are established, and numerical simulations for justifying the theoretical analysis are also presented.
We consider two classes of irreducible Markovian arrival processes specified by the matrices C and D: the Markov-modulated Poisson process (MMPP) and the Markov-switched Poisson process (MSPP). The former exhibits a diagonal matrix D while the latter exhibits a diagonal matrix C. For these two classes we consider the following four statements: (I) the counting process is overdispersed; (II) the hazard rate of the event-stationary interarrival time is nonincreasing; (III) the squared coefficient of variation of the event-stationary process is greater than or equal to one; (IV) there is a stochastic order showing that the time-stationary interarrival time dominates the event-stationary interarrival time. For general MSPPs and order two MMPPs, we show that (I)–(IV) hold. Then for general MMPPs, it is easy to establish (I), while (II) is shown to be false by a counter-example. For general simple point processes, (III) follows from (IV). For MMPPs, we conjecture that (IV) and thus (III) hold. We also carry out some numerical experiments that fail to disprove this conjecture. Importantly, modelling folklore has often treated MMPPs as “bursty”, and implicitly assumed that (III) holds. However, to the best of our knowledge, proving this is still an open problem.
Trachoma is an infectious disease and it is the leading cause of preventable blindness worldwide. To achieve its elimination, the World Health Organization set a goal of reducing the prevalence in endemic areas to less than $5$% by 2020, utilizing the SAFE (surgery, antibiotics, facial cleanliness, environmental improvement) strategy. However, in Burundi, trachoma prevalences of greater than $5$% are still reported in 11 districts and it is hypothesized that this is due to the poor implementation of the environmental improvement factor of the SAFE strategy. In this paper, a model based on an ordinary differential equation, which includes an environmental transmission component, is developed and analysed. The model is calibrated to recent field data and is used to estimate the reductions in trachoma that would have occurred if adequate environmental improvements were implemented in Burundi. Given the assumptions in the model, it is clear that environmental improvement should be considered as a key component of the SAFE strategy and, hence, it is crucial for eliminating trachoma in Burundi.
Dye-sensitized solar cells consistently provide a cost-effective avenue for sources of renewable energy, primarily due to their unique utilization of nanoporous semiconductors. Through mathematical modelling, we are able to uncover insights into electron transport to optimize the operating efficiency of the dye-sensitized solar cells. In particular, fractional diffusion equations create a link between electron density and porosity of the nanoporous semiconductors. We numerically solve a fractional diffusion model using a finite-difference method and a finite-element method to discretize space and an implicit finite-difference method to discretize time. Finally, we calculate the accuracy of each method by evaluating the numerical errors under grid refinement.
The main goal of this paper is to solve a class of Darboux problems by converting them into the two-dimensional nonlinear Volterra integral equation of the second kind. The scheme approximates the solution of these integral equations using the discrete Galerkin method together with local radial basis functions, which use a small set of data instead of all points in the solution domain. We also employ the Gauss–Legendre integration rule on the influence domains of shape functions to compute the local integrals appearing in the method. Since the scheme is constructed on a set of scattered points and does not require any background meshes, it is meshless. The error bound and the convergence rate of the presented method are provided. Some illustrative examples are included to show the validity and efficiency of the new technique. Furthermore, the results obtained demonstrate that this method uses much less computer memory than the method established using global radial basis functions.
The Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation is one of the prototypical reaction–diffusion equations and is encountered in many areas, primarily in population dynamics. An important consideration for the phenomena modelled by diffusion equations is the length of the diffusive process. In this paper, three definitions of the critical time are given, and bounds are obtained by a careful construction of the upper and lower solutions. The comparison functions satisfy the nonlinear, but linearizable, partial differential equations of Fisher–KPP type. Results of the numerical simulations are displayed. Extensions to some classes of reaction–diffusion systems and an application to a spatially heterogeneous harvesting model are also presented.
A classical problem in free-surface hydrodynamics concerns flow in a channel, when an obstacle is placed on the bottom. Steady-state flows exist and may adopt one of three possible configurations, depending on the fluid speed and the obstacle height; perhaps the best known has an apparently uniform flow upstream of the obstacle, followed by a semiinfinite train of downstream gravity waves. When time-dependent behaviour is taken into account, it is found that conditions upstream of the obstacle are more complicated, however, and can include a train of upstream-advancing solitons. This paper gives a critical overview of these concepts, and also presents a new semianalytical spectral method for the numerical description of unsteady behaviour.
We investigate the interaction between a singular surface and a strong shock in the self-gravitating interstellar gas clouds with the assumption of spherical symmetry. Using the method of the Lie group of transformations, a particular solution of the flow variables and the cooling–heating function for an infinitely strong shock is obtained. This paper explores an application of the singular surface theory in the evolution of an acceleration wave front propagating through an unperturbed medium. We discuss the formation of an acceleration, considering the cases of compression and expansion waves. The influence of the cooling–heating function on a shock formation is explained. The results of a collision between a strong shock and an acceleration wave are discussed using the Lax evolutionary conditions.
The classical model for studying one-phase Hele-Shaw flows is based on a highly nonlinear moving boundary problem with the fluid velocity related to pressure gradients via a Darcy-type law. In a standard configuration with the Hele-Shaw cell made up of two flat stationary plates, the pressure is harmonic. Therefore, conformal mapping techniques and boundary integral methods can be readily applied to study the key interfacial dynamics, including the Saffman–Taylor instability and viscous fingering patterns. As well as providing a brief review of these key issues, we present a flexible numerical scheme for studying both the standard and nonstandard Hele-Shaw flows. Our method consists of using a modified finite-difference stencil in conjunction with the level-set method to solve the governing equation for pressure on complicated domains and track the location of the moving boundary. Simulations show that our method is capable of reproducing the distinctive morphological features of the Saffman–Taylor instability on a uniform computational grid. By making straightforward adjustments, we show how our scheme can easily be adapted to solve for a wide variety of nonstandard configurations, including cases where the gap between the plates is linearly tapered, the plates are separated in time, and the entire Hele-Shaw cell is rotated at a given angular velocity.