To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Solutions are found to several problems involving a line source or sink beneath a cusped free surface, over several different impermeable bases. These are compared with known exact and numerical solutions, and with other work, both theoretical and experimental, on similar problems.
Interior-Point Methods (IPMs) are not only very effective in practice for solving linear optimization problems but also have polynomial-time complexity. Despite the practical efficiency of large-update algorithms, from a theoretical point of view, these algorithms have a weaker iteration bound with respect to small-update algorithms. In fact, there is a significant gap between theory and practice for large-update algorithms. By introducing self-regular barrier functions, Peng, Roos and Terlaky improved this gap up to a factor of log n. However, checking these self-regular functions is not simple and proofs of theorems involving these functions are very complicated. Roos el al. by presenting a new class of barrier functions which are not necessarily self-regular, achieved very good results through some much simpler theorems. In this paper we introduce a new kernel function in this class which yields the best known complexity bound, both for large-update and small-update methods.
The problem of generation of waves in a liquid of uniform finite depth with an inertial surface composed of a thin but uniform distribution of disconnected floating particles, due to forced axisymmetric motion prescribed on the surface of an immersed vertical cylindrical wave-maker of circular cross section under the influence of surface tension at the inertial surface, is discussed. The techniques of Laplace transform in time and the modified Weber transform involving Bessel functions in the radial coordinate have been employed to obtain the velocity potential. The steady-state development to the potential function as well as the inertial surface depression due to time-harmonic forced oscillations of the wave-maker are deduced. It is found that the presence of surface tension at the inertial surface ensures the propagation of time-harmonic progressive waves of any angular frequency.
A Demianski-type metric investigated in connection with Einstein's field equations corresponding to pure radiation fields. With aid of complex vectorical formalism, a general solution of these fiel equations is obtained. The solution is algebraically spcial. A particular case of the solution is considered which includes many known solutions; among them are the raiationg versions of some of Kinnersley's solutions.
In a classical paper, E. R. Love considered a certain function defined by a singular integral which is harmonic outside a circular disk. Love's objective was to derive a simple integral equation whose solution leads to a useful formula for the capacitance of the condenser consisting of two parallel circular plates. We close a gap in Love's derivation by finding a new nonsingular representation of Love's singular integral which permits one to draw the required conclusions about its boundary values and thereby establishes the correctness of Love's expression for the capacitance.
Self-heating in packed paniculate that is exothermically reactive is a major cause of fire and explosion in the powder industry. This study is focused on part of the Auckland development of a mathematical model dealing with this hazardous process in industry using milk powder as an example. Milk powder is a primary powdered food product around the world.
An update of the detailed mathematical model is given here, and predictions are made using the model to simulate the basket-heating behaviour of a milk powder in the laboratory (so the model can thus be validated). Basket heating in an oven is a standard laboratory technique for measuring the exothermic reactivity of a solid material.
After a favorable comparison with the laboratory results, several aspects of basket-heating were investigated with a view to further improving the technique. Firstly, the model was used to explore the effect of elevated ambient humidity and initial sample water content upon the heating process in the basket. Secondly, the model was used to explore the cross over phenomenon which is related to a novel procedure for measuring activation energy and exothermicity (that is, the Crossing-Point-Temperature (CPT) method, which is a new version of the basket heating technique). The predictions together with the experimental evidence show that the reaction kinetics obtained using the Heat Release (HR) method (another version of the basket heating technique well published in the literature) may not be correct, especially for those measured at elevated oven temperatures and for larger basket sizes. Thirdly, simulations were performed to illustrate that the CPT phenomenon does not just occur at the center of the basket but also occurs everywhere else in the sample. This can become a significant advantage for further development of the CPT method in terms of reducing experimental duration and improving reproducibility.
The main object of present paper is to obtain a finite summation of Srivastava's general triple hypergeometric series in terms of Kampé de Fériet's double hypergeometric series. A number of finite sums of Kampé de Fériet's double hypergeometric polynomials in terms of different kinds of single hypergeometric polynomials of higher order, are obtained. Some known results of Manocha and Sharma [9], [10], Munot [11], Pathan [12], Qureshi [15], Qureshi and Pathan [16] and Srivastava [26] are deduced as special cases. A result of Pathan [13, page 316 (1.2)] is also corrected here.
This paper is concerned with constructing polynomial solutions to ordinary boundary value problems. A semi-analytic technique using two-point Hermite interpolation is compared with conventional methods via a series of examples and is shown to be generally superior, particularly for problems involving nonlinear equations and/or boundary conditions.
A multiple fractional Brownian motion (FBM)-based traffic model is considered. Various lower bounds for the overflow probability of the associated queueing system are obtained. Based on a probabilistic bound for the busy period of an ATM queueing system associated with a multiple FBM-based input traffic, a minimal dynamic buffer allocation function (DBAF) is obtained and a DBAF-allocation algorithm is designed. The purpose is to create an upper bound for the queueing system associated with the traffic. This upper bound, called a DBAF, is a function of time, dynamically bouncing with the traffic. An envelope process associated with the multiple FBM-based traffic model is introduced and used to estimate the queue size of the queueing system associated with that traffic model.
The Rapp formula of teletraffic dimensioning is generalized to admit an arbitrary renewal stream of offered traffic. The derivation proceeds from a heavy traffic approximation and provides also an estimate of the order of error involved in the Rapp formula. In principle, the method could be used to seek convenient higher order approximations.
Our equations give an incidental theoretical substantiation of an empirical result relating to marginal occupancy found recently by Potter.
We examine the piecewise-constant collocation method, with collocation points the mid-points of subintervals, for first-kind integral equations with logarithmic kernels on polygonal boundaries. Previously this method had been shown to converge subject to certain restrictions on the angles at the corners of the polygon. Here, by considering a slightly modified collocation method, we are able to remove any restrictions on these angles, and to generalise slightly the meshes which may be used. Moreover, the modification leads to new results on the convergence of preconditioned two-(or multi-) grid methods for solving the resultant linear systems.
We study differential game problems in which the players can select different maximal monotone operators for the governing evolution system. Setting up our problem on a real Hilbert space, we show that the Elliott-Kalton upper and lower value of the game are viscosity solution of some Hamilton-Jacobi-Isaacs equations. Uniqueness is obtained by assuming condition analogous to the classical Isaacs condition, and thus the existence of value of the game follows.
In this paper we prove some inequalities for finite sums and infinite series with positive terms. As an application of these results we obtain some inequalities for entropies of discrete probability distributions.
We propose and analyze the spectral collocation approximation for the partial integro-differential equations with a weakly singular kernel. The space discretization is based on the pseudo-spectral method, which is a collocation method at the Gauss-Lobatto quadrature points. We prove unconditional stability and obtain the optimal error bounds which depend on the time step, the degree of polynomial and the Sobolev regularity of the solution.