To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If $S$ is a quintic surface in $\mathbb{P}^{3}$ with singular set 15 3-divisible ordinary cusps, then there is a Galois triple cover ${\it\phi}:X\rightarrow S$ branched only at the cusps such that $p_{g}(X)=4$, $q(X)=0$, $K_{X}^{2}=15$ and ${\it\phi}$ is the canonical map of $X$. We use computer algebra to search for such quintics having a free action of $\mathbb{Z}_{5}$, so that $X/\mathbb{Z}_{5}$ is a smooth minimal surface of general type with $p_{g}=0$ and $K^{2}=3$. We find two different quintics, one of which is the van der Geer–Zagier quintic; the other is new.
We also construct a quintic threefold passing through the 15 singular lines of the Igusa quartic, with 15 cuspidal lines there. By taking tangent hyperplane sections, we compute quintic surfaces with singular sets $17\mathsf{A}_{2}$, $16\mathsf{A}_{2}$, $15\mathsf{A}_{2}+\mathsf{A}_{3}$ and $15\mathsf{A}_{2}+\mathsf{D}_{4}$.
In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.
Mori dream spaces form a large example class of algebraic varieties, comprising the well-known toric varieties. We provide a first software package for the explicit treatment of Mori dream spaces and demonstrate its use by presenting basic sample computations. The software package is accompanied by a Cox ring database which delivers defining data for Cox rings and Mori dream spaces in a suitable format. As an application of the package, we determine the common Cox ring for the symplectic resolutions of a certain quotient singularity investigated by Bellamy–Schedler and Donten-Bury–Wiśniewski.
We show how to efficiently evaluate functions on Jacobian varieties and their quotients. We deduce an algorithm to compute $(l,l)$ isogenies between Jacobians of genus two curves in quasi-linear time in the degree $l^{2}$.
We compute the global log canonical thresholds of quasi-smooth well-formed complete intersection log del Pezzo surfaces of amplitude 1 in weighted projective spaces. As a corollary we show the existence of orbifold Kähler—Einstein metrics on many of them.
We consider higher secant varieties to Veronese varieties. Most points on the rth secant variety are represented by a finite scheme of length r contained in the Veronese variety – in fact, for a general point, the scheme is just a union of r distinct points. A modern way to phrase it is: the smoothable rank is equal to the border rank for most polynomials. This property is very useful for studying secant varieties, especially, whenever the smoothable rank is equal to the border rank for all points of the secant variety in question. In this note, we investigate those special points for which the smoothable rank is not equal to the border rank. In particular, we show an explicit example of a cubic in five variables with border rank 5 and smoothable rank 6. We also prove that all cubics in at most four variables have the smoothable rank equal to the border rank.
We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite-index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.
We study new families of curves that are suitable for efficiently parametrizing their moduli spaces. We explicitly construct such families for smooth plane quartics in order to determine unique representatives for the isomorphism classes of smooth plane quartics over finite fields. In this way, we can visualize the distributions of their traces of Frobenius. This leads to new observations on fluctuations with respect to the limiting symmetry imposed by the theory of Katz and Sarnak.
We give an equivalent definition of the local volume of an isolated singularity $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\rm Vol}_{\text {BdFF}}(X,0)$ given in [S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity. Duke Math. J. 161 (2012), 1455–1520] in the $\mathbb{Q}$-Gorenstein case and we generalize it to the non-$\mathbb{Q}$-Gorenstein case. We prove that there is a positive lower bound depending only on the dimension for the non-zero local volume of an isolated singularity if $X$ is Gorenstein. We also give a non-$\mathbb{Q}$-Gorenstein example with ${\rm Vol}_{\text {BdFF}}(X,0)=0$, which does not allow a boundary $\Delta $ such that the pair $(X,\Delta )$ is log canonical.
We present an improved algorithm for the computation of Zariski chambers on algebraic surfaces. The new algorithm significantly outperforms the currently available method and therefore allows us to treat surfaces of high Picard number, where huge numbers of chambers occur. As an application, we efficiently compute the number of chambers supported by the lines on the Segre–Schur quartic.
We describe an efficient algorithm for the computation of separable isogenies between abelian varieties represented in the coordinate system given by algebraic theta functions. Let A be an abelian variety of dimension g defined over a field of odd characteristic. Our algorithm comprises two principal steps. First, given a theta null point for A and a subgroup K isotropic for the Weil pairing, we explain how to compute the theta null point corresponding to the quotient abelian variety A/K. Then, from the knowledge of a theta null point of A/K, we present an algorithm to obtain a rational expression for an isogeny from A to A/K. The algorithm that results from combining these two steps can be viewed as a higher-dimensional analog of the well-known algorithm of Vélu for computing isogenies between elliptic curves. In the case where K is isomorphic to (ℤ/ℓℤ)g for ℓ∈ℕ*, the overall time complexity of this algorithm is equivalent to O(log ℓ)additions in A and a constant number of ℓth root extractions in the base field of A. In order to improve the efficiency of our algorithms, we introduce a compressed representation that allows us to encode a point of level 4ℓ of a g-dimensional abelian variety using only g(g+1)/2⋅4g coordinates. We also give formulas for computing the Weil and commutator pairings given input points in theta coordinates.
In 1992, Göran Björck and Ralf Fröberg completely characterized the solution set of cyclic-8. In 2001, Jean-Charles Faugère determined the solution set of cyclic-9, by computer algebra methods and Gröbner basis computation. In this paper, a new theory in matrix analysis of rank-deficient matrices together with algorithms in numerical algebraic geometry enables us to present a symbolic-numerical algorithm to derive exactly the defining polynomials of all prime ideals of positive dimension in primary decomposition of cyclic-12. Empirical evidence together with rigorous proof establishes the fact that the positive-dimensional solution variety of cyclic-12 just consists of 72 quadrics of dimension one.
We define an infinite class of fractals, called horizontally and vertically blocked labyrinth fractals, which are dendrites and special Sierpiński carpets. Between any two points in the fractal there is a unique arc α; the length of α is infinite and the set of points where no tangent to α exists is dense in α.
We discuss the Mordell–Weil sieve as a general technique for proving results concerning rational points on a given curve. In the special case of curves of genus 2, we describe quite explicitly how the relevant local information can be obtained if one does not want to restrict to mod p information at primes of good reduction. We describe our implementation of the Mordell–Weil sieve algorithm and discuss its efficiency.
In this paper, we introduce cell-forms on 𝔐0,n, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space 𝔐0,n(ℝ). We show that the cell-forms generate the top-dimensional cohomology group of 𝔐0,n, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell X. The elements of this basis are called insertion forms; their integrals over X are real numbers, called cell-zeta values, which generate a ℚ-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations.
Toric log del Pezzo surfaces correspond to convex lattice polygons containing the origin in their interior and having only primitive vertices. Upper bounds on the volume and on the number of boundary lattice points of these polygons are derived in terms of the index ℓ. Techniques for classifying these polygons are also described: a direct classification for index two is given, and a classification for all ℓ≤16 is obtained.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.