We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is shown that if $\{H_n\}_{n \in \omega}$ is a sequence of groups without involutions, with $1 \lt |H_n| \leq 2^{\aleph_0}$, then the topologist’s product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in \omega}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in \omega} A_n/\bigoplus_{n \in \omega} A_n$ is dependent on the sequence.
We study homotopy groups of spaces of long links in Euclidean space of codimension at least three. With multiple components, they admit split injections from homotopy groups of spheres. We show that, up to knotting, these account for all the homotopy groups in a range which depends on the dimensions of the source manifolds and target manifold and which roughly generalizes the triple-point-free range for isotopy classes. Just beyond this range, joining components sends both a parametrized long Borromean rings class and a Hopf fibration to a generator of the first nontrivial homotopy group of the space of long knots. For spaces of equidimensional long links of most source dimensions, we describe generators for the homotopy group in this degree in terms of these Borromean rings and homotopy groups of spheres. A key ingredient in most of our results is a graphing map which increases source and target dimensions by one.
In this paper, we provide sufficient conditions for a space X to satisfy the Ganea conjecture for topological complexity. To achieve this, we employ two auxiliary invariants: weak topological complexity in the sense of Berstein–Hilton, along with a certain stable version of it. Several examples are discussed.
We show that for an oriented 4-dimensional Poincaré complex X with finite fundamental group, whose 2-Sylow subgroup is abelian with at most 2 generators, the homotopy type of X is determined by its quadratic 2-type.
We show that under mild conditions, the connected sum $M\# N$ of simply connected, closed, orientable n-dimensional Poincaré Duality complexes M and N is hyperbolic and has no homotopy exponent at all but finitely many primes, verifying a weak version of Moore’s conjecture. This is derived from an elementary framework involving $CW$-complexes satisfying certain conditions.
For a path-connected metric space $(X,d)$, the $n$-th homotopy group $\pi _n(X)$ inherits a natural pseudometric from the $n$-th iterated loop space with the uniform metric. This pseudometric gives $\pi _n(X)$ the structure of a topological group, and when $X$ is compact, the induced pseudometric topology is independent of the metric $d$. In this paper, we study the properties of this pseudometric and how it relates to previously studied structures on $\pi _n(X)$. Our main result is that the pseudometric topology agrees with the shape topology on $\pi _n(X)$ if $X$ is compact and $LC^{n-1}$ or if $X$ is an inverse limit of finite polyhedra with retraction bonding maps.
Inspired by a remarkable work of Félix, Halperin, and Thomas on the asymptotic estimation of the ranks of rational homotopy groups, and more recent works of Wu and the authors on local hyperbolicity, we prove two asymptotic formulae for torsion rank of homotopy groups, one using ordinary homology and one using K-theory. We use these to obtain explicit quantitative asymptotic lower bounds on the torsion rank of the homotopy groups for many interesting spaces after suspension, including Moore spaces, Eilenberg–MacLane spaces, complex projective spaces, complex Grassmannians, Milnor hypersurfaces, and unitary groups.
During the last decades, the structure of mod-2 cohomology of the Steenrod ring $\mathscr {A}$ became a major subject in Algebraic topology. One of the most direct attempt in studying this cohomology by means of modular representations of the general linear groups was the surprising work [Math. Z.202 (1989), 493–523] by William Singer, which introduced a homomorphism, the so-called algebraic transfer, mapping from the coinvariants of certain representation of the general linear group to mod-2 cohomology group of the ring $\mathscr A.$ He conjectured that this transfer is a monomorphism. In this work, we prove Singer's conjecture for homological degree $4.$
Ganea proved that the loop space of
$\mathbb{C} P^n$
is homotopy commutative if and only if
$n=3$
. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but
$\mathbb{C} P^3$
are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds
$G/T$
for a maximal torus T of a compact, connected Lie group G.
Let
$\mathscr {A}$
be a topological Azumaya algebra of degree
$mn$
over a CW complex X. We give conditions for the positive integers m and n, and the space X so that
$\mathscr {A}$
can be decomposed as the tensor product of topological Azumaya algebras of degrees m and n. Then we prove that if
$m<n$
and the dimension of X is higher than
$2m+1$
,
$\mathscr {A}$
may not have such decomposition.
We exploit the Galois symmetries of the little disks operads to show that many differentials in the Goodwillie–Weiss spectral sequences approximating the homology and homotopy of knot spaces vanish at a prime $p$. Combined with recent results on the relationship between embedding calculus and finite-type theory, we deduce that the $(n+1)$th Goodwillie–Weiss approximation is a $p$-local universal Vassiliev invariant of degree $\leq n$ for every $n \leq p + 1$.
We determine the (non-)triviality of Samelson products of inclusions of factors of the mod p decomposition of $G_{(p)}$ for $(G,p)=(E_7,5),(E_7,7),(E_8,7)$. This completes the determination of the (non-)triviality of those Samelson products in p-localized exceptional Lie groups when G has p-torsion-free homology.
Infinite product operations are at the forefront of the study of homotopy groups of Peano continua and other locally path-connected spaces. In this paper, we define what it means for a space X to have infinitely commutative
$\pi _1$
-operations at a point
$x\in X$
. Using a characterization in terms of the Specker group, we identify several natural situations in which this property arises. Maintaining a topological viewpoint, we define the transfinite abelianization of a fundamental group at any set of points
$A\subseteq X$
in a way that refines and extends previous work on the subject.
Let p be prime. We prove that, for n odd, the p-torsion part of πq(Sn) has cardinality at most $p^{2^{{1}/({p-1})(q-n+3-2p)}}$ and hence has rank at most 21/(p−1)(q−n+3−2p). for p = 2, these results also hold for n even. The best bounds proven in the existing literature are $p^{2^{q-n+1}}$ and 2q−n+1, respectively, both due to Hans–Werner Henn. The main point of our result is therefore that the bound grows more slowly for larger primes. As a corollary of work of Henn, we obtain a similar result for the homotopy groups of a broader class of spaces.
This note is on spherical classes in $H_*(QS^0;k)$ when $k=\mathbb{Z}, \mathbb{Z}/p$, with a special focus on the case of p=2 related to the Curtis conjecture. We apply Freudenthal's theorem to prove a vanishing result for the unstable Hurewicz image of elements in ${\pi _*^s}$ that factor through certain finite spectra. After either p-localization or p-completion, this immediately implies that elements of well-known infinite families in ${_p\pi _*^s}$, such as Mahowaldean families, map trivially under the unstable Hurewicz homomorphism ${_p\pi _*^s}\simeq {_p\pi _*}QS^0\to H_*(QS^0;\mathbb{Z} /p)$. We also observe that the image of the submodule of decomposable elements under the integral unstable Hurewicz homomorphism $\pi _*^s\simeq \pi _*QS^0\to H_*(QS^0;\mathbb{Z} )$ is given by $\mathbb{Z} \{h(\eta ^2),h(\nu ^2),h(\sigma ^2)\}$. We apply the latter to completely determine spherical classes in $H_*(\Omega ^dS^{n+d};\mathbb{Z} /2)$ for certain values of n>0 and d>0; this verifies Eccles' conjecture on spherical classes in $H_*QS^n$, n>0, on finite loop spaces associated with spheres.
For certain pairs of Lie groups (G, H) and primes p, Harris showed a relation of the p-localized homotopy groups of G and H. This is reinterpreted as a p-local homotopy equivalence G ≃ (p)H × G/H, and so there is a projection G(p) → H(p). We show how much this projection preserves the higher homotopy associativity.
This paper concerns extension of maps using obstruction theory under a non-classical viewpoint. It is given a classification of homotopy classes of maps and as an application it is presented a simple proof of a theorem by Adachi about equivalence of vector bundles. Also it is proved that, under certain conditions, two embeddings are homotopic up to surgery if and only if the respective normal bundles are SO-equivalent.
It is well known that if X is a CW-complex, then for every weak homotopy equivalence f : A → B, the map f* : [X, A] → [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy equivalence, only CW-complexes have that property. Now, for which spaces X is f* : [B, X] → [A, X] a bijection for every weak equivalence f? This question was considered by J. Strom and T. Goodwillie. In this note we prove that a non-empty space inverts weak equivalences if and only if it is contractible.
The algebraic EHP sequences, algebraic analogues of the EHP sequences in homotopy theory, are important tools in algebraic topology. This note will outline two new proofs of the existence of the algebraic EHP sequences. The first proof is derived from the minimal injective resolution of the reduced singular cohomology of spheres, and the second one follows Bousfield's idea using the loop functor of unstable modules.
A natural composition ⊙ on all pages of the lower central series spectral sequence for spheres is defined. Moreover, it is defined for the p-lower central series spectral sequence of a simplicial group. It is proved that the rth differential satisfies a ‘Leibniz rule with suspension’: dr(a ⊙ σ b) = ±dra ⊙ b + a ⊙ dr σ b, where σ is the suspension homomorphism.