We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study convergence in total variation of non-stationary Markov chains in continuous time and apply the results to the image analysis problem of object recognition. The input is a grey-scale or binary image and the desired output is a graphical pattern in continuous space, such as a list of geometric objects or a line drawing. The natural prior models are Markov point processes found in stochastic geometry. We construct well-defined spatial birth-and-death processes that converge weakly to the posterior distribution. A simulated annealing algorithm involving a sequence of spatial birth-and-death processes is developed and shown to converge in total variation to a uniform distribution on the set of posterior mode solutions. The method is demonstrated on a tame example.