We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We look at joint regular variation properties of MA(∞) processes of the form X = (Xk, k ∈ Z), where Xk = ∑j=0∞ψjZk-j and the sequence of random variables (Zi, i ∈ Z) are independent and identically distributed with regularly varying tails. We use the setup of MO-convergence and obtain hidden regular variation properties for X under summability conditions on the constant coefficients (ψj: j ≥ 0). Our approach emphasizes continuity properties of mappings and produces regular variation in sequence space.
A susceptible–exposed–infectious theoretical model describing Tasmanian devil population and disease dynamics is presented and mathematically analysed using a dynamical systems approach to determine its behaviour under a range of scenarios. The steady states of the system are calculated and their stability analysed. Closed forms for the bifurcation points between these steady states are found using the rate of removal of infected individuals as a bifurcation parameter. A small-amplitude Hopf region, in which the populations oscillate in time, is shown to be present and subjected to numerical analysis. The model is then studied in detail in relation to an unfolding parameter which describes the disease latent period. The model’s behaviour is found to be biologically reasonable for Tasmanian devils and potentially applicable to other species.
We consider a nearly unstable, or near unit root, AR(1) process with regularly varying innovations. Two different approximations for the stationary distribution of such processes exist: a Gaussian approximation arising from the nearly unstable nature of the process and a heavy-tail approximation related to the tail asymptotics of the innovations. We combine these two approximations to obtain a new uniform approximation that is valid on the entire real line. As a corollary, we obtain a precise description of the regions where each of the Gaussian and heavy-tail approximations should be used.
Consider n cells, of which some are target cells, and suppose that each cell has a weight. The cells are killed in a sequential manner, with each currently live cell being the next one killed with a probability proportional to its weight. We study the distribution of the number of cells that are alive at the moment when all the target cells have been killed.