To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose that a gambler starts with a fortune in (0,1) and wishes to attain a fortune of 1 by making a sequence of bets. Assume that whenever the gambler stakes an amount s, the gambler's fortune increases by s with probability w and decreases by s with probability 1 − w, where w < ½. Dubins and Savage showed that the optimal strategy, which they called ‘bold play’, is always to bet min{f, 1 − f}, where f is the gambler's current fortune. Here we consider the problem in which the gambler may stake no more than ℓ at one time. We show that the bold strategy of always betting min{ℓ, f, 1 − f} is not optimal if ℓ is irrational, extending a result of Heath, Pruitt, and Sudderth.
We present two variations of a two-person, noncooperative stochastic game, inspired by the famous red-and-black gambling problem presented by Dubins and Savage. Two players each hold an integer amount of money and they each aim to win the other player's fortune. At every stage of the game they simultaneously bid an integer portion of their current fortune, and their probabilities of winning depend on these bids. We describe two different laws of motion specifying this dependency. In one version of the game, the players' probabilities of winning are proportional to their bets. In the other version, the probabilities of winning depend on the size of their bets and a weight parameter w. For each version we give a Nash equilibrium, in which the player for which the game is subfair (w ≤ ½) plays boldly and the player for which the game is superfair (w ≥ ½) plays timidly.
Mr. G owes $100 000 to a loan shark, and will be killed at dawn if the loan is not repaid in full. Mr. G has $20 000, but partial payments are not accepted, and he has no other source of income or credit. The loan shark owns a primitive casino where one can stake any amount in one's possession, gaining r times the stake with probability w and losing the stake with probability 1 - w (r > 0, 0 < w < 1). Mr. G is permitted to gamble at the casino, but each time he places a bet, the amount of his debt is increased by a factor of 1 + α (α ≥ 0). How should Mr. G gamble to maximize his chance of reaching his (moving) target and thereby surviving? Dubins and Savage showed that an optimal strategy is to stake boldly if the primitive casino is subfair or fair (i.e. w(1 + r) ≤ 1) and the inflation rate α is 0. Intuitively, a positive inflation rate would motivate Mr. G to try to reach his goal as quickly as possible, so it seems plausible that the bold strategy is optimal. However, Chen, Shepp, and Zame found that, surprisingly, the bold strategy is no longer optimal for subfair primitive casinos with inflation if both r > 1 and α satisfies 1/r ≤ α < r. They also conjectured that the bold strategy is optimal for subfair primitive casinos with inflation if r < 1. It is shown in the present paper that this conjecture is true provided that w ≤ ½. Furthermore, by introducing an interesting notion of sharp strategy, additional results are obtained on optimality of the bold strategy.
We show that the advantage that can accrue to the server in tennis does not necessarily imply that serving first changes the probability of winning the match. We demonstrate that the outcome of tie-breaks, sets and matches can be independent of who serves first. These are corollaries of a more general invariance result that we prove for n-point win-by-2 games. Our proofs are non-algebraic and self-contained.
In this paper, we consider a model of social learning in a population of myopic, memoryless agents. The agents are placed at integer points on an infinite line. Each time period, they perform experiments with one of two technologies, then each observes the outcomes and technology choices of the two adjacent agents as well as his own outcome. Two learning rules are considered; it is shown that under the first, where an agent changes his technology only if he has had a failure (a bad outcome), the society converges with probability 1 to the better technology. In the other, where agents switch on the basis of the neighbourhood averages, convergence occurs if the better technology is sufficiently better. The results provide a surprisingly optimistic conclusion about the diffusion of the better technology through imitation, even under the assumption of extremely boundedly rational agents.
The purpose of this paper is to analyse the real-time trading of electricity. We address a model for an auction-like trading which captures key features of real-world electricity markets. Our main result establishes that, under certain conditions, the expected total payment for electricity is independent of the particular auction type. This result is analogous to the revenue-equivalence theorem known for classical auctions and could contribute to an improved understanding of different electricity market designs and their comparison.
We consider the stochastic sequence {Yt}t∈ℕ defined recursively by the linear relation Yt+1=AtYt+Bt in a random environment. The environment is described by the stochastic process {(At,Bt)}t∈ℕ and is under the simultaneous control of several agents playing a discounted stochastic game. We formulate sufficient conditions on the game which ensure the existence of Nash equilibria in Markov strategies which have the additional property that, in equilibrium, the process {Yt}t∈ℕ converges in distribution to a stationary regime.
This paper is a first study of two-person zero-sum games for denumerable continuous-time Markov chains determined by given transition rates, with an average payoff criterion. The transition rates are allowed to be unbounded, and the payoff rates may have neither upper nor lower bounds. In the spirit of the ‘drift and monotonicity’ conditions for continuous-time Markov processes, we give conditions on the controlled system's primitive data under which the existence of the value of the game and a pair of strong optimal stationary strategies is ensured by using the Shapley equations. Also, we present a ‘martingale characterization’ of a pair of strong optimal stationary strategies. Our results are illustrated with a birth-and-death game.
This paper analyzes players’ long-run behavior in an evolutionary model with time-varying mutations under both uniform and local interaction rules. It is shown that a risk-dominant Nash equilibrium in a 2 × 2 coordination game would emerge as the long-run equilibrium if and only if mutation rates do not decrease to zero too fast under both interaction methods. The convergence rates of the dynamic system under both interaction rules are also derived. We find that the dynamic system with local matching may not converge faster than that with uniform matching.