To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mean-field games (MFGs) and the best-reply strategy (BRS) are two methods of describing competitive optimisation of systems of interacting agents. The latter can be interpreted as an approximation of the respective MFG system. In this paper, we present an analysis and comparison of the two approaches in the stationary case. We provide novel existence and uniqueness results for the stationary boundary value problems related to the MFG and BRS formulations, and we present an analytical and numerical comparison of the two paradigms in some specific modelling situations.
This paper explores the analysis of ability, where ability is to be understood in the epistemic sense—in contrast to what might be called a causal sense. There are plenty of cases where an agent is able to perform an action that guarantees a given result even though she does not know which of her actions guarantees that result. Such an agent possesses the causal ability but lacks the epistemic ability. The standard analysis of such epistemic abilities relies on the notion of action types—as opposed to action tokens—and then posits that an agent has the epistemic ability to do something if and only if there is an action type available to her that she knows guarantees it. We show that these action types are not needed: we present a formalism without action types that can simulate analyzes of epistemic ability that rely on action types. Our formalism is a standard epistemic extension of the theory of “seeing to it that”, which arose from a modal tradition in the logic of action.
Motivated by problems in percolation theory, we study the following two-player positional game. Let Λm×n be a rectangular grid-graph with m vertices in each row and n vertices in each column. Two players, Maker and Breaker, play in alternating turns. On each of her turns, Maker claims p (as yet unclaimed) edges of the board Λm×n, while on each of his turns Breaker claims q (as yet unclaimed) edges of the board and destroys them. Maker wins the game if she manages to claim all the edges of a crossing path joining the left-hand side of the board to its right-hand side, otherwise Breaker wins. We call this game the (p, q)-crossing game on Λm×n.
Given m, n ∈ ℕ, for which pairs (p, q) does Maker have a winning strategy for the (p, q)-crossing game on Λm×n? The (1, 1)-case corresponds exactly to the popular game of Bridg-it, which is well understood due to it being a special case of the older Shannon switching game. In this paper we study the general (p, q)-case. Our main result is to establish the following transition.
If p ≥ 2q, then Maker wins the game on arbitrarily long versions of the narrowest board possible, that is, Maker has a winning strategy for the (2q, q)-crossing game on Λm×(q+1) for any m ∈ ℕ.
If p ≤ 2q − 1, then for every width n of the board, Breaker has a winning strategy for the (p, q)-crossing game on Λm×n for all sufficiently large board-lengths m.
Our winning strategies in both cases adapt more generally to other grids and crossing games. In addition we pose many new questions and problems.
Assignment flows denote a class of dynamical models for contextual data labelling (classification) on graphs. We derive a novel parametrisation of assignment flows that reveals how the underlying information geometry induces two processes for assignment regularisation and for gradually enforcing unambiguous decisions, respectively, that seamlessly interact when solving for the flow. Our result enables to characterise the dominant part of the assignment flow as a Riemannian gradient flow with respect to the underlying information geometry. We consider a continuous-domain formulation of the corresponding potential and develop a novel algorithm in terms of solving a sequence of linear elliptic partial differential equations (PDEs) subject to a simple convex constraint. Our result provides a basis for addressing learning problems by controlling such PDEs in future work.
Online retailers are increasingly adding buy-online and pick-up-in-store (BOPS) modes to order fulfilment. In this paper, we study a system of BOPS by developing a stochastic Nash equilibrium model with incentive compatibility constraints, where the online retailer seeks optimal online sale prices and an optimal delivery schedule in an order cycle, and the offline retailer pursues a maximal rate of sharing the profit owing to the consignment from the online retailer. By an expectation method and optimality conditions, the equilibrium model is first transformed into a system of constrained nonlinear equations. Then, by a case study and sensitivity analysis, the model is validated and the following practical insights are revealed. (I) Our method can reliably provide an equilibrium strategy for the online and offline retailers under BOPS mode, including the optimal online selling price, the optimal delivery schedule, the optimal inventory and the optimal allocation of profits. (II) Different model parameters, such as operational cost, price sensitivity coefficient, cross-sale factor, opportunity loss ratio and loss ratio of unsold goods, generate distinct impacts on the equilibrium solution and the profits of the BOPS system. (III) Optimization of the delivery schedule can generate greater consumer surplus, and makes the offline retailer share less sale profit from the online retailer, even if the total profit of the BOPS system becomes higher. (IV) Inventory subsidy is an indispensable factor to improve the applicability of the game model in BOPS mode.
We establish that the existence of a winning strategy in certain topological games, closely related to a strong game of Choquet, played in a topological space $X$ and its hyperspace $K(X)$ of all nonempty compact subsets of $X$ equipped with the Vietoris topology, is equivalent for one of the players. For a separable metrizable space $X$, we identify a game-theoretic condition equivalent to $K(X)$ being hereditarily Baire. It implies quite easily a recent result of Gartside, Medini and Zdomskyy that characterizes hereditary Baire property of hyperspaces $K(X)$ over separable metrizable spaces $X$ via the Menger property of the remainder of a compactification of $X$. Subsequently, we use topological games to study hereditary Baire property in spaces of probability measures and in hyperspaces over filters on natural numbers. To this end, we introduce a notion of strong $P$-filter ${\mathcal{F}}$ and prove that it is equivalent to $K({\mathcal{F}})$ being hereditarily Baire. We also show that if $X$ is separable metrizable and $K(X)$ is hereditarily Baire, then the space $P_{r}(X)$ of Borel probability Radon measures on $X$ is hereditarily Baire too. It follows that there exists (in ZFC) a separable metrizable space $X$, which is not completely metrizable with $P_{r}(X)$ hereditarily Baire. As far as we know, this is the first example of this kind.
In 2015, Guglielmi and Badia discussed optimal strategies in a particular type of service system with two strategic servers. In their setup, each server can be either active or inactive and an active server can be requested to transmit a sequence of packets. The servers have varying probabilities of successfully transmitting when they are active, and both servers receive a unit reward if the sequence of packets is transmitted successfully. Guglielmi and Badia provided an analysis of optimal strategies in four scenarios: where each server does not know the other’s successful transmission probability; one of the two servers is always inactive; each server knows the other’s successful transmission probability and they are willing to cooperate.
Unfortunately, the analysis by Guglielmi and Badia contained some errors. In this paper we correct these errors. We discuss three cases where both servers (I) communicate and cooperate; (II) neither communicate nor cooperate; (III) communicate but do not cooperate. In particular, we obtain the unique Nash equilibrium strategy in Case II through a Bayesian game formulation, and demonstrate that there is a region in the parameter space where there are multiple Nash equilibria in Case III. We also quantify the value of communication or cooperation by comparing the social welfare in the three cases, and propose possible regulations to make the Nash equilibrium strategy the socially optimal strategy for both Cases II and III.
We consider the behaviour of minimax recursions defined on random trees. Such recursions give the value of a general class of two-player combinatorial games. We examine in particular the case where the tree is given by a Galton–Watson branching process, truncated at some depth 2n, and the terminal values of the level 2n nodes are drawn independently from some common distribution. The case of a regular tree was previously considered by Pearl, who showed that as n → ∞ the value of the game converges to a constant, and by Ali Khan, Devroye and Neininger, who obtained a distributional limit under a suitable rescaling.
For a general offspring distribution, there is a surprisingly rich variety of behaviour: the (unrescaled) value of the game may converge to a constant, or to a discrete limit with several atoms, or to a continuous distribution. We also give distributional limits under suitable rescalings in various cases.
We also address questions of endogeny. Suppose the game is played on a tree with many levels, so that the terminal values are far from the root. To be confident of playing a good first move, do we need to see the whole tree and its terminal values, or can we play close to optimally by inspecting just the first few levels of the tree? The answers again depend in an interesting way on the offspring distribution.
We consider a two-player zero-sum stochastic differential game with a random planning horizon and diffusive state variable dynamics. The random planning horizon is a function of a non-negative continuous random variable, which is assumed to be independent of the Brownian motion driving the state variable dynamics. We study this game using a combination of dynamic programming and viscosity solution techniques. Under some mild assumptions, we prove that the value of the game exists and is the unique viscosity solution of a certain nonlinear partial differential equation of Hamilton–Jacobi–Bellman–Isaacs type.
We obtain an asymptotic formula for the persistence probability in the positive real line of a random polynomial arising from evolutionary game theory. It corresponds to the probability that a multi-player two-strategy random evolutionary game has no internal equilibria. The key ingredient is to approximate the sequence of random polynomials indexed by their degrees by an appropriate centered stationary Gaussian process.
We consider decision problems with arbitrary action spaces, deterministic transitions, and infinite time horizon. In the usual setup when probability measures are countably additive, a general version of Kuhn’s theorem implies under fairly general conditions that for every mixed strategy of the decision maker there exists an equivalent behavior strategy. We examine to what extent this remains valid when probability measures are only assumed to be finitely additive. Under the classical approach of Dubins and Savage (2014), we prove the following statements: (1) If the action space is finite, every mixed strategy has an equivalent behavior strategy. (2) Even if the action space is infinite, at least one optimal mixed strategy has an equivalent behavior strategy. The approach by Dubins and Savage turns out to be essentially maximal: these two statements are no longer valid if we take any extension of their approach that considers all singleton plays.
In this paper we study continuous-time two-player zero-sum optimal switching games on a finite horizon. Using the theory of doubly reflected backward stochastic differential equations with interconnected barriers, we show that this game has a value and an equilibrium in the players’ switching controls.
We investigate the domination game and the game domination number $\unicode[STIX]{x1D6FE}_{g}$ in the class of split graphs. We prove that $\unicode[STIX]{x1D6FE}_{g}(G)\leq n/2$ for any isolate-free $n$-vertex split graph $G$, thus strengthening the conjectured $3n/5$ general bound and supporting Rall’s $\lceil n/2\rceil$-conjecture. We also characterise split graphs of even order with $\unicode[STIX]{x1D6FE}_{g}(G)=n/2$.
We consider positive zero-sum stochastic games with countable state and action spaces. For each player, we provide a characterization of those strategies that are optimal in every subgame. These characterizations are used to prove two simplification results. We show that if player 2 has an optimal strategy then he/she also has a stationary optimal strategy, and prove the same for player 1 under the assumption that the state space and player 2's action space are finite.
Recent years have seen a large increase in the popularity of Texas hold ’em poker. It is now the most commonly played variant of the game, both in casinos and through online platforms. In this paper, we present a simulation study for games of Texas hold ’em with between two and 23 players. From these simulations, we estimate the probabilities of each player having been dealt the winning hand. These probabilities are calculated conditional on both partial information (that is, the player only having knowledge of his/her cards) and also on fuller information (that is, the true probabilities of each player winning given knowledge of the cards dealt to each player). Where possible, our estimates are compared to exact analytic results and are shown to have converged to three significant figures.
With these results, we assess the poker strategies described in two recent pieces of popular culture. In comparing the ideas expressed in Taylor Swift’s song, New Romantics, and the betting patterns employed by James Bond in the 2006 film, Casino Royale, we conclude that Ms Swift demonstrates a greater understanding of the true probabilities of winning a game of Texas hold ’em poker.
In this paper we establish a new connection between a class of two-player nonzero-sum games of optimal stopping and certain two-player nonzero-sum games of singular control. We show that whenever a Nash equilibrium in the game of stopping is attained by hitting times at two separate boundaries, then such boundaries also trigger a Nash equilibrium in the game of singular control. Moreover, a differential link between the players' value functions holds across the two games.
We consider nonzero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of ergodic backward stochastic differential equations, and prove the existence of a Nash equilibrium undergeneralised Isaac's conditions. We also study the case of interacting players of different type.
Zero-sum two-person finite undiscounted (limiting ratio average) semi-Markov games (SMGs) are considered with a general multichain structure. We derive the strategy evaluation equations for stationary strategies of the players. A relation between the payoff in the multichain SMG and that in the associated stochastic game (SG) obtained by a data-transformation is established. We prove that the multichain optimality equations (OEs) for an SMG have a solution if and only if the associated SG has optimal stationary strategies. Though the solution of the OEs may not be optimal for an SMG, we establish the significance of studying the OEs for a multichain SMG. We provide a nice example of SMGs in which one player has no optimal strategy in the stationary class but has an optimal semistationary strategy (that depends only on the initial and current state of the game). For an SMG with absorbing states, we prove that solutions in the game where all players are restricted to semistationary strategies are solutions for the unrestricted game. Finally, we prove the existence of stationary optimal strategies for unichain SMGs and conclude that the unichain condition is equivalent to require that the game satisfies some recurrence/ergodicity/weakly communicating conditions.
We present solutions to nonzero-sum games of optimal stopping for Brownian motion in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial superharmonic characterisation of the value functions derived in Attard (2015). In this setting the characterisation of the value functions has a transparent geometrical interpretation of 'pulling two ropes' above 'two obstacles' which must, however, be constrained to pass through certain regions. This is an extension of the analogous result derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function in zero-sum games of optimal stopping. To derive the value functions we transform the game into a free-boundary problem. The latter is then solved by making use of the double smooth fit principle which was also observed in Attard (2015). Martingale arguments based on the Itô–Tanaka formula will then be used to verify that the solution to the free-boundary problem coincides with the value functions of the game and this will establish the Nash equilibrium.
We consider two players, starting with m and n units, respectively. In each round, the winner is decided with probability proportional to each player's fortune, and the opponent loses one unit. We prove an explicit formula for the probability p(m, n) that the first player wins. When m ~ Nx0, n ~ Ny0, we prove the fluid limit as N → ∞. When x0 = y0, z → p(N, N + z√N) converges to the standard normal cumulative distribution function and the difference in fortunes scales diffusively. The exact limit of the time of ruin τN is established as (T - τN) ~ N-βW1/β, β = ¼, T = x0 + y0. Modulo a constant, W ~ χ21(z02 / T2).