We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A semigroup over a generalized tree, denoted by the term ℳL-semigroup, is a compact semigroup S such that Green's relation H is a congruence on S and S/H is an abelian generalized tree with idempotent endpoints and E(S/H) a Lawson semilattice. Each such semigroup is characterized as being constructible from cylindrical subsemigroups of S and the generalized tree S/H in a manner similar to the construction of semigroups over trees and of the hormos. Indeed, semigroups over trees are shown to be particular examples of the construction given herein.
A sandwich semigroup of continuous functions consists of continuous functions with domains all in some space X and ranges all in some space Y with multiplication defined by fg = foαog where α is a fixed continuous function from a subspace of Y into X. These semigroups include, as special cases, a number of semigroups previously studied by various people. In this paper, we characterize the regular elements of such semigroups and we completely determine Green's relations for the regular elements. We also determine the maximal subgroups and, finally, we apply some of these results to semigroups of Boolean ring homomorphisms.