We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let 𝒯X be the full transformation semigroup on a set X and E be a nontrivial equivalence on X. Write then TE(X) is a subsemigroup of 𝒯X. In this paper, we endow TE(X) with the so-called natural order and determine when two elements of TE(X) are related under this order, then find out elements of TE(X) which are compatible with ≤ on TE(X). Also, the maximal and minimal elements and the covering elements are described.
A submonoid S of a monoid M is said to be cofull if it contains the group of units of M. We extract from the work of Easdown, East and FitzGerald (2002) a sufficient condition for a monoid to embed as a cofull submonoid of the coset monoid of its group of units, and show further that this condition is necessary. This yields a simple description of the class of finite monoids which embed in the coset monoids of their group of units. We apply our results to give a simple proof of the result of McAlister [D. B. McAlister, ‘Embedding inverse semigroups in coset semigroups’, Semigroup Forum20 (1980), 255–267] which states that the symmetric inverse semigroup on a finite set X does not embed in the coset monoid of the symmetric group on X. We also explore examples, which are necessarily infinite, of embeddings whose images are not cofull.
For a numerical semigroup S, a positive integer a and anonzero element m of S, we define a new numerical semigroup R(S,a,m) and call it the (a,m)-rotation of S. In this paper we study the Frobenius number and the singularity degree of R(S,a,m). Moreover, we observe that the rotations of ℕ are precisely the modular numerical semigroups.
Kublanovsky has shown that if a subvariety V of the variety RSn generated by completely 0-simple semigroups over groups of exponent n is itself generated by completely 0-simple semigroups, then it must satisfy one of three conditions: (i) A2 ∈ V; (ii) (iii) B2∈V but The conditions (i) and (ii) are also sufficient conditions. In this note, we complete Kublanovsky’s programme by refining condition (iii) to obtain a complete set of conditions that are both necessary and sufficient.
In 1975, Symons described the automorphisms of the semigroup T(X,Y ) consisting of all total transformations from a set X into a fixed subset Y of X. Recently Sanwong, Singha and Sullivan determined all maximal (and all minimal) congruences on T(X,Y ), and Sommanee studied Green’s relations in T(X,Y ). Here, we describe Green’s relations and ideals for the semigroup T(V,W) consisting of all linear transformations from a vector space V into a fixed subspace W of V.
It is known that, for semigroups, the property of admitting a finite presentation is preserved on passing to subsemigroups and extensions of finite Rees index. The present paper shows that the same holds true for Malcev, cancellative, left-cancellative and right-cancellative presentations. (A Malcev (respectively, cancellative, left-cancellative, right-cancellative) presentation is a presentation of a special type that can be used to define any group-embeddable (respectively, cancellative, left-cancellative, right-cancellative) semigroup.)
The finite generation and presentation of Schützenberger products of semigroups are investigated. A general necessary and sufficient condition is established for finite generation. The Schützenberger product of two groups is finitely presented as an inverse semigroup if and only if the groups are finitely presented, but is not finitely presented as a semigroup unless both groups are finite.
Completely regular semigroups CR are regarded here as algebras with multiplication and the unary operation of inversion. Their lattice of varieties is denoted by L(CR). Let B denote the variety of bands and L(B) the lattice of its subvarieties. The mapping V → V ∩ B is a complete homomorphism of L(CR) onto L(B). The congruence induced by it has classes that are intervals, say VB = [VB, VB] for V ∈ L(CR). Here VB = V ∩ B. We characterize VB in several ways, the principal one being an inductive way of constructing bases for v-irreducible band varieties. We term the latter canonical. We perform a similar analysis for the intersection of these varieties with the varieties BG, OBG and B.
This paper concerns parabolic submonoids of a class of monoids known as singular Artin monoids. The latter class includes the singular braid monoid— a geometric extension of the braid group, which was created for the sole purpose of studying Vassiliev invariants in knot theory. However, those monoids may also be construed (and indeed, are defined) as a formal extension of Artin groups which, in turn, naturally generalise braid groups. It is the case, by van der Lek and Paris, that standard parabolic subgroups of Artin groups are canonically isomorphic to Artin groups. This naturally invites us to consider whether the same holds for parabolic submonoids of singular Artin monoids. We show that it is in fact true when the corresponding Coxeter matrix is of ‘type FC’ hence generalising Corran's result in the ‘finite type’ case.
The partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all isomorphisms between its inverse subsemigroups. We prove that a tightly connected fundamental inverse semigroup S with no isolated nontrivial subgroups is lattice determined ‘modulo semilattices’ and if T is an inverse semigroup whose partial automorphism monoid is isomorphic to that of S, then either S and T are isomorphic or they are dually isomorphic chains relative to the natural partial order; a similar result holds if T is any semigroup and the inverse monoids consisting of all isomorphisms between subsemigroups of S and T, respectively, are isomorphic. Moreover, for these results to hold, the conditions that S be tightly connected and have no isolated nontrivial subgroups are essential.
It is shown that the complex semigroup algebra of a free monoid of rank at least two is *-primitive, where * denotes the involution on the algebra induced by word-reversal on the monoid.
To any given balanced semigroup identity U ≈ W a number of polyhedral convex cones are associated. In this setting an algorithm is proposed which determines whether the given identity is satisfied in the bicylic semigroup or in the semigroup . The semigroups BC and E deserve our attention because a semigroup variety contains a simple semigroup which is not completely simple (respectively, which is idempotent free) if and only if this variety contains BC (respectively, E). Therefore, for a given identity U ≈ W it is decidable whether or not the variety determined by U ≈ W contains a simple semigroup which is not completely simple (respectively, which is idempotent free).
Let M be a reductive algebraic monoid with zero and unit group G. We obtain a description of the submonoid generated by the idempotents of M. In particular, we find necessary and sufficient conditions for M\G to be idempotent generated.
We construct the freest idempotent-pure expansion of an inverse semigroup, generalizing an expansion of Margolis and Meakin for the group case. We also generalize the Birget-Rhodes prefix expansion to inverse semigroups with an application to partial actions of inverse semigroups. In the process of generalizing the latter expansion, we are led to a new class of idempotent-pure homomorphisms which we term F-morphisms. These play the same role in the theory of idempotent-pure homomorphisms that F-inverse monoids play in the theory of E-unitary inverse semigroups.
We define a notion of conjugacy in singular Artin moniods, and solve the corresponding conjugacy problem for finite types. We sgiw that this definition is appropriate to describe type (1) singular Markov moves on singular braids. Parabolic submonoids of singular Artin monoids are defined and, in finite type, are shown to be singular Artin monoids. Solutions to conjugacy-type problems of parabolic submonoids are described. Geometric objects defined by Fenn, Rolfsen and Zhu, called (j, k)-bands, are algebraically characterised, and a procedure is given which determines when a word represents a (j, k)-band.
For a permutation group H on an infinite set X and a transformation f of X, let 〈f: H〉 = 〈{hfh-1:h є; H}〉 be a group closure of f. We find necessary and sufficient conditions for distinct normal subgroups of the symmetric group on X and a one-to-one transformation f of X to generate distinct group closures of f. Amongst these group closures we characterize those that are left simple, left cancellative, idempotent-free semigroups, whose congruence lattice forms a chain and whose congruences are preserved under automorphisms.
A generalization of the Pastijn product is introduced so that, on the level of e-varieties and pseudoe-varieties, this product and the regular semidirect product by completely simple semigroups ‘almost always’ coincide. This is applied to give a model of the bifree objects in every e-variety formed as a regular semidirect product of a variety of inverse semigroups by a variety of completely simple semigroups that is not a group variety.
The Archimedean components of triangular norms (which turn the closed unit interval into anabelian, totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular norms, and some construction methods for Archimedean components are given. The triangular norms which are uniquely determined by their Archimedean components are characterized. Using ordinal sums and additive generators, new types of left-continuous triangular norms are constructed.
A subsemigroup S of a semigroup Q is a left order in Q, and Q is a semigroup of left quotients of S, if every element of Q can be written as a−1b for some a, b∈S with a belonging to a group -class of Q. Necessary and sufficient conditions on a semigroup S are obtained in order that S be a left order in a completely 0-simple semigroup Q. The class of all completely 0-simple semigroups of left quotients of S is related to the set of certain left congruences on S. Axioms are provided for semigroups which occur in the discussion of left orders in completely 0-simple semigroups.