We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The holonomic rank of the A-hypergeometric system MA(β) is the degree of the toric ideal IA for generic parameters; in general, this is only a lower bound. To the semigroup ring of A we attach the ranking arrangement and use this algebraic invariant and the exceptional arrangement of non-generic parameters to construct a combinatorial formula for the rank jump of MA(β). As consequences, we obtain a refinement of the stratification of the exceptional arrangement by the rank of MA(β) and show that the Zariski closure of each of its strata is a union of translates of linear subspaces of the parameter space. These results hold for generalized A-hypergeometric systems as well, where the semigroup ring of A is replaced by a non-trivial weakly toric module M⊆ℂ[ℤA] . We also provide a direct proof of the main result in [M. Saito, Isomorphism classes of A-hypergeometric systems, Compositio Math. 128 (2001), 323–338] regarding the isomorphism classes of MA (β) .
We introduce the notion of wide representation of an inverse semigroup and prove that with a suitably defined topology there is a space of germs of such a representation that has the structure of an étale groupoid. This gives an elegant description of Paterson's universal groupoid and of the translation groupoid of Skandalis, Tu and Yu. In addition, we characterize the inverse semigroups that arise from groupoids, leading to a precise bijection between the class of étale groupoids and the class of complete and infinitely distributive inverse monoids equipped with suitable representations, and we explain the sense in which quantales and localic groupoids carry a generalization of this correspondence.
We show that if A is a stable basis algebra satisfying the distributivity condition, then B is a reduct of an independence algebra A having the same rank. If this rank is finite, then the endomorphism monoid of B is a left order in the endomorphism monoid of A.
We extend the result obtained in E. Godelle [‘The braid rook monoid’, Internat. J. Algebra Comput.18 (2008), 779–802] to every Renner monoid: we provide a monoid presentation for Renner monoids, and we introduce a length function which extends the Coxeter length function and which behaves nicely.
For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X. For α∈Γ(X), let C(α)={β∈Γ(X):αβ=βα} be the centralizer of α in Γ(X). For an arbitrary α∈Γ(X), we characterize the elements of C(α) and determine Green’s relations in C(α), including the partial orders of ℒ-, ℛ-, and 𝒥-classes.
We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid Cn associated with the Cuntz groupoid Gn is the strong orthogonal completion of the polycyclic (or Cuntz) monoid Pn. The group of units of Cn is the Thompson group Vn,1.
Let R be a ring, S a strictly ordered monoid, and ω:S→End(R) a monoid homomorphism. The skew generalized power series ring R[[S,ω]] is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal’cev–Neumann Laurent series rings. We study the (S,ω)-Armendariz condition on R, a generalization of the standard Armendariz condition from polynomials to skew generalized power series. We resolve the structure of (S,ω)-Armendariz rings and obtain various necessary or sufficient conditions for a ring to be (S,ω)-Armendariz, unifying and generalizing a number of known Armendariz-like conditions in the aforementioned special cases. As particular cases of our general results we obtain several new theorems on the Armendariz condition; for example, left uniserial rings are Armendariz. We also characterize when a skew generalized power series ring is reduced or semicommutative, and we obtain partial characterizations for it to be reversible or 2-primal.
Marques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math.140 (2003), 103–118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the ‘containment order’: namely, if α,β∈P(X) then α⊆β means xα=xβ for all x∈dom α, the domain of α. The other order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc. Amer. Math. Soc.97(3) (1986), 384–388] for any semigroup. In this paper, we consider these and other orders defined on the symmetric inverse semigroup I(X) and the partial Baer–Levi semigroup PS(q). We show that there are surprising differences between the orders on these semigroups, concerned with their compatibility with respect to composition and the existence of maximal and minimal elements.
This paper continues the investigation of semigroup constructions motivated by applications in data mining. We give a complete description of the error-correcting capabilities of a large family of clusterers based on Rees matrix semigroups well known in semigroup theory. This result strengthens and complements previous formulas recently obtained in the literature. Examples show that our theorems do not generalize to other classes of semigroups.
Our first main result shows that a graph product of right cancellative monoids is itself right cancellative. If each of the component monoids satisfies the condition that the intersection of two principal left ideals is either principal or empty, then so does the graph product. Our second main result gives a presentation for the inverse hull of such a graph product. We then specialize to the case of the inverse hulls of graph monoids, obtaining what we call ‘polygraph monoids’. Among other properties, we observe that polygraph monoids are F*-inverse. This follows from a general characterization of those right cancellative monoids with inverse hulls that are F*-inverse.
Inspired by the results of Adin, Postnikov and Roichman, we propose combinatorial Gelfand models for semigroup algebras of some finite semigroups, which include the symmetric inverse semigroup, the dual symmetric inverse semigroup, the maximal factorizable subsemigroup in the dual symmetric inverse semigroup and the factor power of the symmetric group. Furthermore, we extend the Gelfand model for the semigroup algebras of the symmetric inverse semigroup to a Gelfand model for the q-rook monoid algebra.
A variety is said to be a Rees–Sushkevich variety if it is contained in a periodic variety generated by 0-simple semigroups. Recently, all combinatorial Rees–Sushkevich varieties have been shown to be finitely based. The present paper continues the investigation of these varieties by describing those that are Cross, finitely generated, or small. It is shown that within the lattice of combinatorial Rees–Sushkevich varieties, the set ℱ of finitely generated varieties constitutes an incomplete sublattice and the set 𝒮 of small varieties constitutes a strict incomplete sublattice of ℱ. Consequently, a combinatorial Rees–Sushkevich variety is small if and only if it is Cross. An algorithm is also presented that decides if an arbitrarily given finite set Σ of identities defines, within the largest combinatorial Rees–Sushkevich variety, a subvariety that is finitely generated or small. This algorithm has complexity 𝒪(nk) where n is the number of identities in Σ and k is the length of the longest word in Σ.
We introduce the notion of a strong representation of a semigroup in the monoid of endomorphisms of any mathematical structure, and use this concept to provide a theoretical description of the automorphism group of any semigroup. As an application of our general theorems, we extend to semigroups a well-known result concerning automorphisms of groups, and we determine the automorphism groups of certain transformation semigroups and of the fundamental inverse semigroups.
We give a graph-theoretic definition for the number of ends of Cayley digraphs for finitely generated semigroups and monoids. For semigroups and monoids, left Cayley digraphs can be very different from right Cayley digraphs. In either case, the number of ends for the Cayley digraph does not depend upon which finite set of generators is used for the semigroup or monoid. For natural numbers m and n, we exhibit finitely generated monoids for which the left Cayley digraphs have m ends while the right Cayley digraphs have n ends. For direct products and for many other semidirect products of a pair of finitely generated infinite monoids, the right Cayley digraph of the semidirect product has only one end. A finitely generated subsemigroup of a free semigroup has either one end or else has infinitely many ends.
A one-dimensional tiling is a bi-infinite string on a finite alphabet, and its tiling semigroup is an inverse semigroup whose elements are marked finite substrings of the tiling. We characterize the structure of these semigroups in the periodic case, in which the tiling is obtained by repetition of a fixed primitive word.
We introduce partial actions of weakly left E-ample semigroups, thus extending both the notion of partial actions of inverse semigroups and that of partial actions of monoids. Weakly left E-ample semigroups arise very naturally as subsemigroups of partial transformation semigroups which are closed under the unary operation α↦α+, where α+ is the identity map on the domain of α. We investigate the construction of ‘actions’ from such partial actions, making a connection with the FA-morphisms of Gomes. We observe that if the methods introduced in the monoid case by Megrelishvili and Schröder, and by the second author, are to be extended appropriately to the case of weakly left E-ample semigroups, then we must construct not global actions, but so-called incomplete actions. In particular, we show that a partial action of a weakly left E-ample semigroup is the restriction of an incomplete action. We specialize our approach to obtain corresponding results for inverse semigroups.
In this paper we prove two main results. The first is a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated. The second result is a necessary and sufficient condition for such a semidirect product to be finitely presented.
In any regular semigroup with an orthodox transversal, we define two sets R and L using Green’s relations and give necessary and sufficient conditions for them to be subsemigroups. By using R and L, some equivalent conditions for an orthodox transversal to be a quasi-ideal are obtained. Finally, we give a structure theorem for regular semigroups with quasi-ideal orthodox transversals by two orthodox semigroups R and L.
Suppose that X is an infinite set and I(X) is the symmetric inverse semigroup defined on X. If α∈I(X), we let domα and ran α denote the domain and range of α, respectively, and we say that g(α)=|X/domα| and d(α)=|X/ran α| is the ‘gap’ and the ‘defect’ of α, respectively. In this paper, we study algebraic properties of the semigroup . For example, we describe Green’s relations and ideals in A(X), and determine all maximal subsemigroups of A(X) when X is uncountable.
We study commutation properties of subsets of right-angled Artin groups and trace monoids. We show that if Γ is any graph not containing a four-cycle without chords, then the group G(Γ) does not contain four elements whose commutation graph is a four-cycle; a consequence is that G(Γ) does not have a subgroup isomorphic to a direct product of non-abelian groups. We also obtain corresponding and more general results in the monoid case.