We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterise the elements of the (maximum) idempotent-generated subsemigroup of the Kauffman monoid in terms of combinatorial data associated with certain normal forms. We also calculate the smallest size of a generating set and idempotent generating set.
Let $V$ be a vector space and let $T(V)$ denote the semigroup (under composition) of all linear transformations from $V$ into $V$. For a fixed subspace $W$ of $V$, let $T(V,W)$ be the semigroup consisting of all linear transformations from $V$ into $W$. In 2008, Sullivan [‘Semigroups of linear transformations with restricted range’, Bull. Aust. Math. Soc.77(3) (2008), 441–453] proved that
is the largest regular subsemigroup of $T(V,W)$ and characterized Green’s relations on $T(V,W)$. In this paper, we determine all the maximal regular subsemigroups of $Q$ when $W$ is a finite-dimensional subspace of $V$ over a finite field. Moreover, we compute the rank and idempotent rank of $Q$ when $W$ is an $n$-dimensional subspace of an $m$-dimensional vector space $V$ over a finite field $F$.
In the 1970s, Feldman and Moore classified separably acting von Neumann algebras containing Cartan maximal abelian self-adjoint subalgebras (MASAs) using measured equivalence relations and 2-cocycles on such equivalence relations. In this paper we give a new classification in terms of extensions of inverse semigroups. Our approach is more algebraic in character and less point-based than that of Feldman and Moore. As an application, we give a restatement of the spectral theorem for bimodules in terms of subsets of inverse semigroups. We also show how our viewpoint leads naturally to a description of maximal subdiagonal algebras.
An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.
We study some questions on numerical semigroups of type 2. On the one hand, we investigate the relation between the genus and the Frobenius number. On the other hand, for two fixed positive integers g1, g2, we give necessary and sufficient conditions in order to have a numerical semigroup S such that {g1, g2} is the set of its pseudo-Frobenius numbers and, moreover, we explicitly build families of such numerical semigroups.
This paper studies the growths of endomorphisms of finitely generated semigroups. The growth is a certain dynamical characteristic describing how iterations of the endomorphism ‘stretch’ balls in the Cayley graph of the semigroup. We make a detailed study of the relation of the growth of an endomorphism of a finitely generated semigroup and the growth of the restrictions of the endomorphism to finitely generated invariant subsemigroups. We also study the possible values endomorphism growths can attain. We show the role of linear algebra in calculating the growths of endomorphisms of homogeneous semigroups. Proofs are a mixture of syntactic algebraic rewriting techniques and analytical tricks. We state various problems and suggestions for future research.
A monoid S is said to be right coherent if every finitely generated subact of every finitely presented right S-act is finitely presented. Left coherency is defined dually and S is coherent if it is both right and left coherent. These notions are analogous to those for a ring R (where, of course, S-acts are replaced by R-modules). Choo et al. have shown that free rings are coherent. In this paper we prove that, correspondingly, any free monoid is coherent, thus answering a question posed by Gould in 1992.
We augment the body of existing results on embedding finite semigroups of a certain type into 2-generator finite semigroups of the same type. The approach adopted applies to finite semigroups the idempotents of which form a band and also to finite orthodox semigroups.
We show that every finitely generated algebra that is a finitely generated module over a finitely generated commutative subalgebra is an automaton algebra in the sense of Ufnarovskii.
We investigate properties which ensure that a given finite graph is the commuting graph of a group or semigroup. We show that all graphs on at least two vertices such that no vertex is adjacent to all other vertices is the commuting graph of some semigroup. Moreover, we obtain complete classifications of the graphs with an isolated vertex or edge that are the commuting graph of a group and the cycles that are the commuting graph of a centrefree semigroup.
The pseudo-Frobenius numbers of a numerical semigroup are those gaps of the numerical semigroup that are maximal for the partial order induced by the semigroup. We present a procedure to detect if a given set of integers is the set of pseudo-Frobenius numbers of a numerical semigroup and, if so, to compute the set of all numerical semigroups having this set as set of pseudo-Frobenius numbers.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, Decompositions of commutative monoid congruences and binomial ideals, Algebra and Number Theory 8 (2014), 1297–1364], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decompositions that are direct combinatorial analogues of binomial irreducible decompositions, and for binomial ideals we construct decompositions into ideals that are as irreducible as possible while remaining binomial. We provide an example of a binomial ideal that is not an intersection of irreducible binomial ideals, thus answering a question of Eisenbud and Sturmfels [Binomial ideals, Duke Math. J. 84 (1996), 1–45].
In this paper we determine the structure of the total component of the Schur multiplier over an algebraically closed field of some relevant families of groups, such as dihedral groups, dicyclic groups, the infinite cyclic group and the direct product of two finite cyclic groups.
For each positive $n$, let $\mathbf{u}_{n}\approx \boldsymbol{v}_{n}$ denote the identity obtained from the Adjan identity $(xy)(yx)(xy)(xy)(yx)\approx (xy)(yx)(yx)(xy)(yx)$ by substituting $(xy)\rightarrow (x_{1}x_{2}\ldots x_{n})$ and $(yx)\rightarrow (x_{n}\ldots x_{2}x_{1})$. We show that every monoid which satisfies $\mathbf{u}_{n}\approx \boldsymbol{v}_{n}$ for each positive $n$ and generates a variety containing the bicyclic monoid is nonfinitely based. This implies that the monoid $U_{2}(\mathbb{T})$ (respectively, $U_{2}(\overline{\mathbb{Z}})$) of two-by-two upper triangular tropical matrices over the tropical semiring $\mathbb{T}=\mathbb{R}\cup \{-\infty \}$ (respectively, $\overline{\mathbb{Z}}=\mathbb{Z}\cup \{-\infty \}$) is nonfinitely based.
We give a sufficient condition under which a semigroup is nonfinitely based. As an application, we show that a certain variety is nonfinitely based, and we indicate the additional analysis (to be presented in a forthcoming paper), which shows that this example is a new limit variety of aperiodic monoids.
In this paper, we investigate strongly regular congruences on $E$-inversive semigroups $S$. We describe the complete lattice homomorphism of strongly regular congruences, which is a generalization of an open problem of Pastijn and Petrich for regular semigroups. An abstract characterization of left and right traces for strongly regular congruences is given. The strongly regular (sr) congruences on $E$-inversive semigroups $S$ are described by means of certain strongly regular congruence triples $({\it\gamma},K,{\it\delta})$ consisting of certain sr-normal equivalences ${\it\gamma}$ and ${\it\delta}$ on $E(S)$ and a certain sr-normal subset $K$ of $S$. Further, we prove that each strongly regular congruence on $E$-inversive semigroups $S$ is uniquely determined by its associated strongly regular congruence triple.
Let $G$ be a split reductive group. We introduce the moduli problem of bundle chains parametrizing framed principal $G$-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of $G$. All toric orbifolds may be thus obtained. Moreover, we get a canonical compactification of any semisimple $G$, which agrees with the wonderful compactification in the adjoint case, but which in other cases is an orbifold. Finally, we describe the connections with Losev–Manin’s spaces of weighted pointed curves and with Kausz’s compactification of $GL_{n}$.
We calculate the rank and idempotent rank of the semigroup ${\mathcal{E}}(X,{\mathcal{P}})$ generated by the idempotents of the semigroup ${\mathcal{T}}(X,{\mathcal{P}})$ which consists of all transformations of the finite set $X$ preserving a nonuniform partition ${\mathcal{P}}$. We also classify and enumerate the idempotent generating sets of minimal possible size. This extends results of the first two authors in the uniform case.
The trace on matrix rings, along with the augmentation map and Kaplansky trace on group rings, are some of the many examples of linear functions on algebras that vanish on all commutators. We generalize and unify these examples by studying traces on (contracted) semigroup rings over commutative rings. We show that every such ring admits a minimal trace (i.e., one that vanishes only on sums of commutators), classify all minimal traces on these rings, and give applications to various classes of semigroup rings and quotients thereof. We then study traces on Leavitt path algebras (which are quotients of contracted semigroup rings), where we describe all linear traces in terms of central maps on graph inverse semigroups and, under mild assumptions, those Leavitt path algebras that admit faithful traces.
A paper of Almeida and Trotter [‘The pseudoidentity problem and reducibility for completely regular semigroups’, Bull. Aust. Math. Soc.63 (2001), 407–433] makes essential use of free profinite semigroupoids over profinite graphs with infinitely many vertices. It has since been shown that such structures must be handled with great care. In this note, it is verified that the required properties hold for the profinite graphs considered by Almeida and Trotter, thereby filling the gaps in the proof.