We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a finite Clifford inverse algebra $A$, with natural order meet-semilattice ${Y}_{A} $ and group of units ${G}_{A} $, we show that the inverse monoid obtained as the semidirect product ${ Y}_{A}^{1} {\mathop{\ast }\nolimits}_{\rho } {G}_{A} $ has a log-polynomial free spectrum whenever $\rho $ is a term-expressible left action of ${G}_{A} $ on ${Y}_{A} $ and all subgroups of $A$ are nilpotent. This yields a number of examples of finite inverse monoids satisfying the Seif conjecture on finite monoids whose free spectra are not doubly exponential.
For an arbitrary set $X$ (finite or infinite), denote by $\mathcal {I}(X)$ the symmetric inverse semigroup of partial injective transformations on $X$. For $ \alpha \in \mathcal {I}(X)$, let $C(\alpha )=\{ \beta \in \mathcal {I}(X): \alpha \beta = \beta \alpha \}$ be the centraliser of $ \alpha $ in $\mathcal {I}(X)$. For an arbitrary $ \alpha \in \mathcal {I}(X)$, we characterise the transformations $ \beta \in \mathcal {I}(X)$ that belong to $C( \alpha )$, describe the regular elements of $C(\alpha )$, and establish when $C( \alpha )$ is an inverse semigroup and when it is a completely regular semigroup. In the case where $\operatorname {dom}( \alpha )=X$, we determine the structure of $C(\alpha )$in terms of Green’s relations.
The homomorphic image of a congruence is always a tolerance (relation) but, within a given variety, a tolerance is not necessarily obtained this way. By a Maltsev-like condition, we characterise varieties whose tolerances are homomorphic images of their congruences (TImC). As corollaries, we prove that the variety of semilattices, all varieties of lattices, and all varieties of unary algebras have TImC. We show that a congruence n-permutable variety has TImC if and only if it is congruence permutable, and construct an idempotent variety with a majority term that fails TImC.
We compute the quiver of any finite monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO) to representation-theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of ℛ-trivial monoids, we also provide a semigroup-theoretic description of the projective indecomposable modules and compute the Cartan matrix.
Let 𝒯n(F) denote the monoid of all upper triangular n×n matrices over a finite field F. It has been shown by Volkov and Goldberg that 𝒯n(F) is nonfinitely based if ∣F∣>2 and n≥4, but the cases when ∣F∣>2 and n=2,3 or when ∣F∣=2have remained open. In this paper, it is shown that the monoid 𝒯2 (F)is finitely based when ∣F∣=2 , and a finite identity basis for it is given. Moreover, all maximal subvarieties of the variety generated by 𝒯2 (F)with ∣F∣=2are determined.
Let 𝒯X be the full transformation semigroup on the nonempty set X. We fix a nonempty subset Y of X and consider the semigroup of transformations that leave Y invariant, and endow it with the so-called natural partial order. Under this partial order, we determine when two elements of S(X,Y ) are related, find the elements which are compatible and describe the maximal elements, the minimal elements and the greatest lower bound of two elements. Also, we show that the semigroup S(X,Y ) is abundant.
An algebra A is said to be finitely related if the clone Clo(A) of its term operations is determined by a finite set of finitary relations. We prove that each finite idempotent semigroup satisfying the identity xyxzx≈xyzx is finitely related.
We devise a fairly general sufficient condition ensuring that the endomorphism monoid of a countably infinite ultrahomogeneous structure (i.e. a Fraïssé limit) embeds all countable semigroups. This approach not only provides us with a framework unifying the previous scattered results in this vein, but actually yields new applications for endomorphism monoids of the (rational) Urysohn space and the countable universal ultrahomogeneous semilattice.
Non-degenerate monoids of skew type are considered. This is a class of monoids S defined by n generators and quadratic relations of certain type, which includes the class of monoids yielding set-theoretic solutions of the quantum Yang–Baxter equation, also called binomial monoids (or monoids of I-type with square-free defining relations). It is shown that under any degree-lexicographic order on the associated free monoid FMn. of rank n the set of normal forms of elements of S is a regular language in FMn. As one of the key ingredients of the proof, it is shown that an identity of the form xN yN = yN xN holds in S. The latter is derived via an investigation of the structure of S viewed as a semigroup of matrices over a field. It also follows that the semigroup algebra K[S] is a finite module over a finitely generated commutative subalgebra of the form K[A] for a submonoid A of S.
Let X be any set and P(X) the set of all partial transformations defined on X, that is, all functions α:A→B where A,B are subsets of X. Then P(X) is a semigroup under composition. Let Y be a subset of X. Recently, Fernandes and Sanwong defined PT(X,Y )={α∈P(X):Xα⊆Y } and defined I(X,Y )to be the set of all injective transformations in PT(X,Y ) . Hence PT(X,Y )and I(X,Y )are subsemigroups of P(X) . In this paper, we study properties of the so-called natural partial order ≤ on PT(X,Y )and I(X,Y )in terms of domains, images and kernels, compare ≤ with the subset order, characterise the meet and join of these two orders, then find elements of PT(X,Y )and I(X,Y )which are compatible. Also, the minimal and maximal elements are described.
We introduce a new construction involving Rees matrix semigroups and max-plus algebras that is very convenient for generating sets of centroids. We describe completely all optimal sets of centroids for all Rees matrix semigroups without any restrictions on the sandwich matrices.
We give an explicit description of the free objects in the quasivariety of adequate semigroups, as sets of labelled directed trees under a natural combinatorial multiplication. The morphisms of the free adequate semigroup onto the free ample semigroup and into the free inverse semigroup are realised by a combinatorial ‘folding’ operation which transforms our trees into Munn trees. We use these results to show that free adequate semigroups and monoids are 𝒥-trivial and never finitely generated as semigroups, and that those which are finitely generated as (2,1,1)-algebras have decidable word problem.
Recent research of the author has studied edge-labelled directed trees under a natural multiplication operation. The class of all such trees (with a fixed labelling alphabet) has an algebraic interpretation, as a free object in the class of adequate semigroups. We consider here a natural subclass of these trees, defined by placing a restriction on edge orientations, and show that the resulting algebraic structure is a free object in the class of left adequate semigroups. Through this correspondence we establish some structural and algorithmic properties of free left adequate semigroups and monoids, and consequently of the category of all left adequate semigroups.
The operator that constructs the pseudovariety generated by the idempotent-generated semi-groups of a given pseudovariety is investigated. Several relevant examples of pseudovarieties generated by their idempotent-generated elements are given, as well as some properties of this operator. Particular attention is paid to the pseudovarieties in {J, R, L, DA} concerning this operator and their generator ranks and idempotent-generator ranks.
Let S be an inverse semigroup and let π:S→T be a surjective homomorphism with kernel K. We show how to obtain a presentation for K from a presentation for S, and vice versa. We then investigate the relationship between the properties of S, K and T, focusing mainly on finiteness conditions. In particular we consider finite presentability, solubility of the word problem, residual finiteness, and the homological finiteness property FPn. Our results extend several classical results from combinatorial group theory concerning group extensions to inverse semigroups. Examples are also provided that highlight the differences with the special case of groups.
We classify semigroups in the title according to whether they have a finite or an infinite number ofℒ-classes or ℛ-classes. For each case, we provide a concrete construction using Rees matrix semigroups and their translational hulls. An appropriate relatively free semigroup is used to complete the classification. All this is achieved by first treating the special case in which one of the generators is idempotent. We conclude by a discussion of a possible classification of 2-generator completely regular semigroups.
Let Y be a fixed nonempty subset of a set X and let T(X,Y ) denote the semigroup of all total transformations from X into Y. In 1975, Symons described the automorphisms of T(X,Y ). Three decades later, Nenthein, Youngkhong and Kemprasit determined its regular elements, and more recently Sanwong, Singha and Sullivan characterized all maximal and minimal congruences on T(X,Y ). In 2008, Sanwong and Sommanee determined the largest regular subsemigroup of T(X,Y ) when |Y |≠1and Y ≠ X; and using this, they described the Green’s relations on T(X,Y ) . Here, we use their work to describe the ideal structure of T(X,Y ) . We also correct the proof of the corresponding result for a linear analogue of T(X,Y ) .
The partition monoid is a salient natural example of a *-regular semigroup. We find a Galois connection between elements of the partition monoid and binary relations, and use it to show that the partition monoid contains copies of the semigroup of transformations and the symmetric and dual-symmetric inverse semigroups on the underlying set. We characterize the divisibility preorders and the natural order on the (straight) partition monoid, using certain graphical structures associated with each element. This gives a simpler characterization of Green’s relations. We also derive a new interpretation of the natural order on the transformation semigroup. The results are also used to describe the ideal lattices of the straight and twisted partition monoids and the Brauer monoid.
We prove that the variety consisting of all involutory inflations of normal bands is the unique maximal residually finite variety consisting of combinatorial semigroups with involution.