We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A common generalization of the author's embedding theorem concerning the E-unitary regular semigroups with regular band of idempotents, and Billhardt's and Ismaeel's embedding theorem on the inverse semigroups, the closure of whose set of idempotents is a Clifford semigroup, is presented. We prove that each orthodox semigroup with a regular band of idempotents, which is an extension of an orthogroup K by a group, can be embedded into a semidirect product of an orthogroup K′ by a group, where K′ belongs to the variety of orthogroups generated by K. The proof is based on a criterion of embeddability into a semidirect product of an orthodox semigroup by a group and uses bilocality of orthogroup bivarieties.
In this paper we shall extend the classical theory of Morita equivalence to semigroups with local units. We shall use the concept of a Morita context to rediscover the Rees theorem and to characterise completely 0-simple and regular bisimple semigroups.
In this paper conditions of M-symmetry, strong, semimodularity and θ-modularity for the congruence lattice L (S) of a regular ω-semigroup S are studied. They are proved to be equivalent to modularity. Moreover it is proved that the kernel relation is a congruence on L(S) if and only if L(S) is modular, generalizing an analogous result stated by Petrich for bisimple ω-semigroups.
An existence variety of regular semigroups is a class of regular semigroups which is closed under the operations of forming all homomorphic images, all regular subsemigroups and all direct products. In this paper we generalize results on varieties of inverse semigroups to existence varieties of orthodox semigroups.
Band sums of associative rings were introduced by Weissglass in 1973. The main theorem claims that the support of every Artinian band sum of rings is finite. This result is analogous to the well-known theorem on Artinian semigroup rings.
Let X be an infinite set and T(X) be the full transformation semigroup on X. In [4] and [6] Howie gives a description of the subsemigroup of T(X) generated by its idempotents. In order to do this he defines, for α in T(X),
and refers to the cardinals s(α) = |S(α)|, d(α) = |Z(α)| and |c(α) = |C(α)| as the shift, the defect, and the collapse of α respectively. Then putting
he proves that the subsemigroup of T(X) generated by its idempotents is . Furthermore, both F and Q are generated by their idempotents
The free product *CRSi of an arbitrary family of disjoint completely simple semigroups {Si}i∈i, within the variety CR of completely regular semigroups, is described by means of a theorem generalizing that of Kaďourek and Polák for free completely regular semigroups. A notable consequence of the description is that all maximal subgroups of *CRSi are free, except for those in the factors Si themselves. The general theorem simplifies in the case of free CR-products of groups and, in particular, free idempotent-generated completely regular semigroups.
The operators K, k, T and t are defined on the lattice of congruences on a Rees matrix semigroup S as follows. For ρ ∈ (S), ρK and ρk (ρT and ρt) are the greatest and the least congruences with the same kernel (trace) as ρ, respectively. We determine the semigroup generated by the operators K, k, T and t as they act on all completely simple semigroups. We also determine the network of congruences associated with a congruence ρ ∈ (S) and the lattice generated by it. The latter is then represented by generators and relations.
We establish a one-to-one “group-like” correspondence between congruences on a free monoid X* and so-called positively self-conjugate inverse submonoids of the polycyclic monoid P(X). This enables us to translate many concepts in semigroup theory into the language of inverse semigroups.
This paper is concerned with a new notion of coherency for monoids. A monoid S is right coherent if the first order theory of right S-sets is coherent; this is equivalent to the property that every finitely generated S-subset of every finitely presented right S-set is finitely presented. If every finitely generated right ideal of S is finitely presented we say that S is weakly right coherent. As for the corresponding situation for modules over a ring, we show that our notion of coherency is related to products of flat left S-sets, although there are some marked differences in behaviour from the case for rings. Further, we relate our work to ultraproducts of flat left S-sets and so to the question of axiomatisability of certain classes of left S-sets.
We show that a monoid S is weakly right coherent if and only if the right annihilator congruence of every element is finitely generated and the intersection of any two finitely generated right ideals is finitely generated. A similar result describes right coherent monoids. We use these descriptions to recognise several classes of (weakly) right coherent monoids. In particular we show that any free monoid is weakly right (and left) coherent and any free commutative monoid is right (and left) coherent.
In this note a characterization of semigroups with atomistic consruence lattices, given for weakly reductive semigroups, is generalized to arbitrary semigroups. Also, it is shown that there is a complete congruence on the congruence lattice of such a semigroup that decomposes it into a disjoint union of intervals of the partition lattice.
A semigroup is totally commutative if each of its essentially binary polynomials is commutative, or equivalently, if in every polynomial (word) every two essential variables commute. In the present paper we describe all varieties (equational classes) of totally commutative semigroups, lattices of subvarieties for any variety, and their free spectra.
Let S, T1,… Tk be finite semigroups and Ψ: S → Ti, be embeddings. When C[S] is semisimple, we find necessary and sufficient conditions for the semigroup amalgam (T1,…, Tk; S) to be embeddable in a finite semigroup. As a consequence we show that if S is a finite semigroup with C[S] semisimple, then S is an amalgamation base for the class of finite semigroups if and only if the principal ideals of S are linearly ordered. Our proof uses both the theory of representations by transformations and the theory of matrix representations as developed by Clifford, Munn and Ponizovskii
We establish a duality between distributive bisemilattices and certain compact left normal bands. The main technique in the proof utilizes the idea of Plonka sums.
Bands of associative rings were introduced in 1973 by Weissglass. For the radicals playing most essential roles in the structure theory (in particular, for those of Jacobson, Baer, Levitsky, Koethe) it is shown how to find the radical of a band of rings. The technique of the general Kurosh-Amitsur radical theory is used to consider many radicals simultaneously.
A right S-system over a monoid S is a set A on which S acts unitarily on the right. That is, there is a function A such that (φ,1)φ and (a, st)φ = ((a, s) t)φ for all a є A and for all s, t є S. We shall refer to right S-systems simply as S-systems. It is clear what is meant by S-homomorphism, S-subsystem etc.; further details of the terms used in this Introduction are given in Section 2.
In the terminology of Birget and Rhodes [3], an expansion is a functor F from the category of semigroups into some special category of semigroups such that there is a natural transformation η from F to the identity functor for which ηs is surjective for every semigroup S. The three expansions introduced in [3] have proved to be of particular interest when applied to groups. In fact, as shown in [4], Ĝ(2) are isomorphic for any group G, is an E-unitary inverse monoid and the kernel of the homomorphism ηG is the minimum group congruence on . Furthermore, if G is the free group on A, then the “cut-down to generators” which is a subsemigroup of is the free inverse semigroup on A. Essentially the same result was given by Margolis and Pin [12].
A completely regular semigroup is a semigroup which is a union of groups. The class CR of completely regular semigroups forms a variety. On the lattice L (CR) of completely regular semigroup varieties we define two closure operations which induce complete congruences. The consideration of a third complete congruence on L (CR) yields a subdirect decomposition of L (CR). Using these results we show that L (CR) is arguesian. This confirms the (tacit) conjecture that L (CR) is modular.
The structure of semigroups with atomistic congruence lattices (that is, each congruence is the supremum of the atoms it contains) is studied. For the weakly reductive case the problem of describing the structure of such semigroups is solved up to simple and congruence free semigroups, respectively. As applications, all commutative, finite, completely semisimple semigroups, respectively, with atomistic congruence lattices are described.
The class CR of completely regular semigroups (unions of groups or algebras with the associative binary operation of multiplication and the unary operation of inversion subject to the laws x = xx-1, (x−1)-1 = x and xx-1 = x-1x) is a variety. Among the important subclasses of CR are the classes M of monoids and I of idempotent generated members. For each C ∈ {I, M}, there are associated mappings ν → ν ∩ C and ν → (Ν ∩ C), the variety generated by ν ∩ C. The lattice theoretic properties of these mappings and the interactions between these mappings are studied.