We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that every incidence graph of a finite projective plane allows a partitioning into incident point-line pairs. This is used to determine the order of the identity in the K0-group of so-called polygonal algebras associated with cocompact group actions on Ã2-buildings with three orbits. These C*-algebras are classified by the K0-group and the class of the identity in K0. To be more precise, we show that 2(q − 1) = 0, where q is the order of the links of the building. Furthermore, if q = 22l−1 with l ∈ ℤ, then the order of is q − 1.
In this article, we begin by recalling the inversion formula for the convolution with the box spline. The equivariant cohomology and the equivariant $K$-theory with respect to a compact torus $G$ of various spaces associated to a linear action of $G$ in a vector space $M$ can both be described using some vector spaces of distributions, on the dual of the group $G$ or on the dual of its Lie algebra $\mathfrak{g}$. The morphism from $K$-theory to cohomology is analyzed, and multiplication by the Todd class is shown to correspond to the operator (deconvolution) inverting the semi-discrete convolution with a box spline. Finally, the multiplicities of the index of a $G$-transversally elliptic operator on $M$ are determined using the infinitesimal index of the symbol.
Vincent Lafforgue's bivariant K-theory for Banach algebras is invariant in the second variable under a rather general notion of Morita equivalence. In particular, the ordinary topological K-theory for Banach algebras is invariant under Morita equivalences.
The Kasparov groups are extended to the setting of inverse limits of G-C*-algebras, where G is assumed to be a locally compact group. The K K-product and other important features of the theory are generalized to this setting.
We adapt the Toeplitz operator proof of Bott periodicity to give a short direct proof of Bott periodicity for the representable K-theory of σ-C*-algebras. We further show how the use of this proof and the right definitions simplifies the derivation of the basic properties of representable K-theory.
Using various facts about principal bundles over a space, we give a unified treatment of several theorems about the structure of stable separable continuous-trace algebras, their automorphisms, and their K-theory. We also present a classification of real continuous-trace algebras from the same point of view.