To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize Weihrauch reducibility in $ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$ and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
Here, we present a category ${\mathbf {pEff}}$ which can be considered a predicative variant of Hyland's Effective Topos ${{\mathbf {Eff} }}$ for the following reasons. First, its construction is carried in Feferman’s predicative theory of non-iterative fixpoints ${{\widehat {ID_1}}}$. Second, ${\mathbf {pEff}}$ is a list-arithmetic locally cartesian closed pretopos with a full subcategory ${{\mathbf {pEff}_{set}}}$ of small objects having the same categorical structure which is preserved by the embedding in ${\mathbf {pEff}}$; furthermore subobjects in ${{\mathbf {pEff}_{set}}}$ are classified by a non-small object in ${\mathbf {pEff}}$. Third ${\mathbf {pEff}}$ happens to coincide with the exact completion of the lex category defined as a predicative rendering in ${{\widehat {ID_1}}}$ of the subcategory of ${{\mathbf {Eff} }}$ of recursive functions and it validates the Formal Church’s thesis. Hence pEff turns out to be itself a predicative rendering of a full subcategory of ${{\mathbf {Eff} }}$.
We study the structure of families of theories in the language of arithmetic extended to allow these families to refer to one another and to themselves. If a theory contains schemata expressing its own truth and expressing a specific Turing index for itself, and contains some other mild axioms, then that theory is untrue. We exhibit some families of true self-referential theories that barely avoid this forbidden pattern.
In 1932, von Neumann proposed classifying the statistical behavior of differentiable systems. Joint work of B. Weiss and the author proved that the classification problem is complete analytic. Based on techniques in that proof, one is able to show that the collection of recursive diffeomorphisms of the 2-torus that are isomorphic to their inverses is $\Pi ^0_1$-hard via a computable 1-1 reduction. As a corollary there is a diffeomorphism that is isomorphic to its inverse if and only if the Riemann Hypothesis holds, a different one that is isomorphic to its inverse if and only if Goldbach’s conjecture holds and so forth. Applying the reduction to the $\Pi ^0_1$-sentence expressing “ZFC is consistent” gives a diffeomorphism T of the 2-torus such that the question of whether $T\cong T^{-1}$ is independent of ZFC.
We investigate relationships between versions of derivability conditions for provability predicates. We show several implications and non-implications between the conditions, and we discuss unprovability of consistency statements induced by derivability conditions. First, we classify already known versions of the second incompleteness theorem, and exhibit some new sets of conditions which are sufficient for unprovability of Hilbert–Bernays’ consistency statement. Secondly, we improve Buchholz’s schematic proof of provable $\Sigma_1$-completeness. Then among other things, we show that Hilbert–Bernays’ conditions and Löb’s conditions are mutually incomparable. We also show that neither Hilbert–Bernays’ conditions nor Löb’s conditions accomplish Gödel’s original statement of the second incompleteness theorem.
In this note we give a simplified ordinal analysis of first-order reflection. An ordinal notation system $OT$ is introduced based on $\psi $-functions. Provable $\Sigma _{1}$-sentences on $L_{\omega _{1}^{CK}}$ are bounded through cut-elimination on operator controlled derivations.
The prevalent interpretation of Gödel’s Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem’s dependency regarding Gödel numberings. I introduce deviant numberings, yielding provability predicates satisfying Löb’s conditions, which result in provable consistency sentences. According to the main result of this paper however, these “counterexamples” do not refute the theorem’s prevalent interpretation, since once a natural class of admissible numberings is singled out, invariance is maintained.
We consider the Lambek calculus, or noncommutative multiplicative intuitionistic linear logic, extended with iteration, or Kleene star, axiomatised by means of an $\omega $-rule, and prove that the derivability problem in this calculus is $\Pi _1^0$-hard. This solves a problem left open by Buszkowski (2007), who obtained the same complexity bound for infinitary action logic, which additionally includes additive conjunction and disjunction. As a by-product, we prove that any context-free language without the empty word can be generated by a Lambek grammar with unique type assignment, without Lambek’s nonemptiness restriction imposed (cf. Safiullin, 2007).
This paper clarifies, revises, and extends the account of the transmission of truthmakers by core proofs that was set out in chap. 9 of Tennant (2017). Brauer provided two kinds of example making clear the need for this. Unlike Brouwer’s counterexamples to excluded middle, the examples of Brauer that we are dealing with here establish the need for appeals to excluded middle when applying, to the problem of truthmaker-transmission, the already classical metalinguistic theory of model-relative evaluations.
We investigate a recent proposal for modal hypersequent calculi. The interpretation of relational hypersequents incorporates an accessibility relation along the hypersequent. These systems give the same interpretation of hypersequents as Lellman’s linear nested sequents, but were developed independently by Restall for S5 and extended to other normal modal logics by Parisi. The resulting systems obey Došen’s principle: the modal rules are the same across different modal logics. Different modal systems only differ in the presence or absence of external structural rules. With the exception of S5, the systems are modular in the sense that different structural rules capture different properties of the accessibility relation. We provide the first direct semantical cut-free completeness proofs for K, T, and D, and show how this method fails in the case of B and S4.
It is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orderedness phenomenon by studying a coarsening of the consistency strength order, namely, the $\Pi ^1_1$ reflection strength order. We prove that there are no descending sequences of $\Pi ^1_1$ sound extensions of $\mathsf {ACA}_0$ in this ordering. Accordingly, we can attach a rank in this order, which we call reflection rank, to any $\Pi ^1_1$ sound extension of $\mathsf {ACA}_0$. We prove that for any $\Pi ^1_1$ sound theory T extending $\mathsf {ACA}_0^+$, the reflection rank of T equals the $\Pi ^1_1$ proof-theoretic ordinal of T. We also prove that the $\Pi ^1_1$ proof-theoretic ordinal of $\alpha $ iterated $\Pi ^1_1$ reflection is $\varepsilon _\alpha $. Finally, we use our results to provide straightforward well-foundedness proofs of ordinal notation systems based on reflection principles.
We show that the replacement rule of the sequent calculi ${\bf G3[mic]}^= $ in [8] can be replaced by the simpler rule in which one of the principal formulae is not repeated in the premiss.
We present a sequent calculus for the Grzegorczyk modal logic $\mathsf {Grz}$ allowing cyclic and other non-well-founded proofs and obtain the cut-elimination theorem for it by constructing a continuous cut-elimination mapping acting on these proofs. As an application, we establish the Lyndon interpolation property for the logic $\mathsf {Grz}$ proof-theoretically.
Any set of truth-functional connectives has sequent calculus rules that can be generated systematically from the truth tables of the connectives. Such a sequent calculus gives rise to a multi-conclusion natural deduction system and to a version of Parigot’s free deduction. The elimination rules are “general,” but can be systematically simplified. Cut-elimination and normalization hold. Restriction to a single formula in the succedent yields intuitionistic versions of these systems. The rules also yield generalized lambda calculi providing proof terms for natural deduction proofs as in the Curry–Howard isomorphism. Addition of an indirect proof rule yields classical single-conclusion versions of these systems. Gentzen’s standard systems arise as special cases.
This paper contributes to the calculization of evocation and erotetic implication as defined by Inferential Erotetic Logic (IEL). There is a straightforward approach to calculizing (propositional) erotetic implication which cannot be applied to evocation. First-order evocation is proven to be uncalculizable, i.e. there is no proof system, say FOE, such that for all $X, Q$: X evokes Q iff there is an FOE-proof for the evocation of Q by X. These results suggest a critique of the represented approaches to calculizing IEL. This critique is expanded into a programmatic reconsideration of the IEL-definitions of evocation and erotetic implication. From a different point of view these definitions should be seen as desiderata that may or may not play the role of a point of orientation when setting up “rules of asking.”
The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950), Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with each other, especially from the viewpoint of the second incompleteness theorem. It is shown that Gödel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness theorem in the standard way. It is also shown that none of Rosser’s, Kleene’s second, or Boolos’ theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness theorem neither delivers nor is derived from the second incompleteness theorem. We compare (the strength of) these six proofs with one another.
We obtain modal completeness of the interpretability logics IL$\!\!\textsf {P}_{\textsf {0}}$ and ILR w.r.t. generalised Veltman semantics. Our proofs are based on the notion of full labels [2]. We also give shorter proofs of completeness w.r.t. the generalised semantics for many classical interpretability logics. We obtain decidability and finite model property w.r.t. the generalised semantics for IL$\textsf {P}_{\textsf {0}}$ and ILR. Finally, we develop a construction that might be useful for proofs of completeness of extensions of ILW w.r.t. the generalised semantics in the future, and demonstrate its usage with $\textbf {IL}\textsf {W}^\ast = \textbf {IL}\textsf {WM}_{\textsf {0}}$.
In the present paper we use the theory of exact completions to study categorical properties of small setoids in Martin-Löf type theory and, more generally, of models of the Constructive Elementary Theory of the Category of Sets, in terms of properties of their subcategories of choice objects (i.e., objects satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack equalisers and just have weak ones, but whose objects can be regarded as collections of global elements. In this context, we study the internal logic of the categories involved, and employ this analysis to give a sufficient condition for the local cartesian closure of an exact completion. Finally, we apply this result to show when an exact completion produces a model of CETCS.
In a recent paper by M. Rathjen and the present author it has been shown that the statement “every normal function has a derivative” is equivalent to $\Pi ^1_1$-bar induction. The equivalence was proved over $\mathbf {ACA_0}$, for a suitable representation of normal functions in terms of dilators. In the present paper, we show that the statement “every normal function has at least one fixed point” is equivalent to $\Pi ^1_1$-induction along the natural numbers.
A cornerstone of modern mathematical logic is the diagonal lemma of Gödel and Carnap. It is used in, for example, the classical proofs of the theorems of Gödel, Rosser, and Tarski. From its first explication in 1934, just essentially one proof has appeared for the diagonal lemma in the literature; a proof that is so tricky and hard to relate that many authors have tried to avoid the lemma altogether. As a result, some so-called diagonal-free proofs have been given for the above-mentioned fundamental theorems of logic. In this paper, we provide new proofs for the semantic formulation of the diagonal lemma, and for a weak version of the syntactic formulation of it.