To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose μ and ν are Borel measures on locally compact spaces X and Y, respectively. A product measure λ can be defined on the Borel sets of X x Y by the formula λ(M) = ∫ν(Mx) dμ, provided that vertical cross section measure ν(Mx) is a measurable function in x. Conditions are summarized for ν(Mx) to be measurable as a function in x, and examples are given in which the function ν(Mx) is not measurable. It is shown that a dense, countably compact set fails to be a Borel set if it contains no nonempty zero set.
In [1], [2] Besicovitch showed that it is possible to translate each straight line in the plane so that the union of all the translates has zero plane measure. More recently Besicovitch and Rado [3] and independently Kinney [12] showed that the same can be done with arcs of circles instead of straight lines (see also Davies [6]). Allowing rotations as well as translations, Ward [18] showed that all plane polygonal curves can be “packed” thus (allowing overlapping) into zero plane measure, and then Davies [7], making use of Besicovitch's construction, showed translations alone to be sufficient, although these papers in fact contained stronger results concerning Hausdorff measure; the results were further generalized in [16]. The question has naturally been asked whether the class of all plane rectifiable curves can be packed by isometries (translations and rotations) into zero plane measure, but a special case of the main theorem of the present paper shows that this is impossible. The corresponding question remains open for the much smaller class of algebraic curves, or even conies.
In a typical counter-example construction in geometric measure theory, starting from some initial set one obtains by successive reductions a decreasing sequence of sets Fn, whose intersection has some required property; it is desired that ∩ Fn shall have large Hausdorf F dimension. It has long been known that this can often be accomplished by making each Fn+1 sufficiently “dense” in Fn. Our first theorem expresses this intuitive idea in a precise form that we believe to be both new and potentially useful, if only for simplifying the exposition in such cases. Our second theorem uses just such a construction to solve the problem that originally stimulated this work: can a Borel set in ℝk have Hausdorff dimension k and yet for continuum-many directions in every angle have at most one point on each line in that direction? The set of such directions must have measure zero, since in fact in almost all directions there are lines that meet the Borel set (of dimension k) in a set of dimension 1: this can easily be deduced from Theorem 6.6 of Mattila [5], which generalized Marstrand's result [4] for the case k = 2.
We exhibit (§2) an example of §a compact Hausdorff space supporting a Radon probability measure μ and a continuous map ø : X → I, when I is the closed unit interval, for which the image measure ø(μ) is Lebesgue measur m with the properties:
(i) there exists an open set G ⊂ X for which ø(G) is not m-measurable;
(ii) μ is a non-atomic non-completion regular measure;
(iii) the measure algebras (X, μ) and (I, m) are isomorphic but for no choice c sets B ⊂ X, B′ ⊂ I of measure zero are and homeomorphic
(iv) there exists a selection p : I → X (i.e. p(t) ∊ ø−1(t) for all t ∊ I) which i Borel m-measurable, but there is no Lusin m-measurable selection.
A certain natural extension B of the Borel σ-algebra is studied in generalized weakly θ-refinable spaces. It is shown that a set belongs to B whenever it belongs to B locally. From this it is derived that if ℵωα is more complicated than aunion of less than ℵα weakly θ-refinable subspaces.
A complete characterization of Boolean algebras which admit nonatomic charges (i.e. finitely additive measures) is obtained. This also gives rise to a characterization of superatomic Boolean algebras. We also consider the problem of denseness of the set of all nonatomic charges in the space of all charges on a given Boolean algebra, equipped with a suitable topology.
Let μ be a Borel measure on a completely regular space X, and denote by ℱ the σ-algebra of all μ*-measurable subsets of X. Suppose that, as an abstract measure space, (X, ℱ, μ) is isomorphism mod zero with the standard Lebesgue space (I, ℒ, m) via an isomorphism φ : X → I. In this note we attempt to answer the following question: Under what conditions can the isomorphism φ be chosen to be a homeomorphism mod zero? When X is compact, the existence of such a homeomorphism was established in [3, §4] under the assumption of uniform regularity of μ. Whether or not the result can be established without this assumption, was posed as an open question there. Here, we give necessary and sufficient conditions for the existence of the above homeomorphism, together with various examples showing, among other things, that the assumption of uniform regularity used in [3, §4] cannot be dropped.
Davies and Rogers [5] constructed a compact metric space Ω which is singular for a certain Hausdorff measure μh, in the sense that all subsets of Ω have μh-measure zero or infinity and μh(Ω) = ∞. (For a further study of this example see Boardman [3]). The interest lies in its extremely good descriptive character, which was lacking in the earlier examples given by Besicovitch [2] (a plane set singular for linear measure) and Choquet [4] (a plane set singular for any Hausdorff measure for which a segment has positive measure).
Let G be any enumerable subset of the positive real numbers, with infinity as its only limit point. The purpose of this paper is to give a construction for a Lebesgue measurable set E ⊂ R+, with the following properties:
Our result complements an interesting result of Roy O. Davies [1]; we assume familiarity with his paper. We use the details of the construction that he uses to prove his Theorem II.
The notion of nonatomicity of a measure on a Boolean σ-algebra is an important concept in measure theory. What could be an appropriate analogue of this notion for charges defined on Boolean algebras is one of the topics dealt with in this paper. Analogous to the decomposition of a measure on a Boolean σ-algebra into atomic and nonatomic parts, no decomposition of charges is available in the literature. We provide a simple proof of such a decomposition. Next, we study the conditions under which a Boolean algebra admits certain types of charges. These conditions lead us to give a characterisation of superatomic Boolean algebras. Babiker' [1] almost discrete spaces are connected with superatomic Boolean algebras and a generalisation of one of his theorems is obtained. A counterexample is also provided to disprove one of his theorems. Finally, denseness problems of certain types of charges are studied.
Integral geometry is the study of measures of sets of geometric figures. Commonly a measure of this sort is an integral of a density or differential form; the density is determined by the type of figure, but is independent of the particular set of such figures to which the measure is assigned. As one of the simplest examples, the area of a plane convex point set K is the integral over K of the density dx dy for points with Cartesian co-ordinates x, y. But when we assign a Hausdorff linear measure to the set of boundary points of K, we obtain a measure of quite another sort. This is representable as a Stieltjes integral of arc length density; here the density depends on the choice of K. The examples suggest examining measures for other sets of figures, where each such set is made up of all those figures from a certain class which support, in some sense, a convex body. Further, the examples lead us to expect that measures of this kind will appear as integrals of densities which may depend on the choices of . Here we treat a question of the type just described: to determine a measure for sets of q–flats which support a convex body.
Every compact Hausdorff space with no isolated points admits a non-atomic measure.
This note is concerned with the converse problem in a more general set up. Here we deal with certain properties of the family of completely regular spaces admitting no continuous measures. In §3 it is shown that this family contains spaces with no isolated points, thus theorem (1.1) does not generalize to completely regular spaces. In §4 a canonical decomposition of the compact members of the above family into discrete subspaces is obtained, and it is shown that these spaces are metrizable whenever they satisfy the first axiom of countability.
Problem I was raised (oral communication) by Goffman some three years ago, and I found the example then. Problem II was raised at about the same time by Topsøe; Christensen has given an affirmative answer for spaces satisfying certain additional conditions.
It is easy to see that if the answer to problem I were affirmative then so would be that to problem II; therefore our counter-example for problem II implies the existence of one for problem I. It is also possible that another counter-example for problem I could be found by analysing the construction of Dieudonn6 in [1], which is also concerned (implicitly) with a failure of Vitali's theorem. Nevertheless our construction may be of independent interest.