We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For an indefinite quadratic form f(x1,…,xn) of discriminant d. let P(f) denote the greatest lower bound of the positive values assumed by f for integers x1, …, xn. This paper investigates the values of P3/|d| for nonzero ternary forms of signature −1, and finds the only remaining class of forms with .
We consider the problem of finding, for each even number m, a basis of orthogonal vectors of length in the Leech lattice. We give such a construction by means of double circulant codes whenever m = 2p and p is a prime not equal to 11. From this one can derive a construction for all even m not of the form 2· 11r.
The shape of large densest sphere packings in a lattice L ⊂ Ed (d ≥ 2), measured by parametric density, tends asymptotically not to a sphere but to a polytope, the Wulff-shape, which depends only on L and the parameter. This is proved via the density deviation, derived from parametric density and diophantine approximation. In crystallography the Wulff-shape describes the shape of ideal crystals. So the result further indicates that the shape of ideal crystals can be described by dense lattice packings of spheres in E3.
This paper depends on results of Baranovskii [1], [2]. The covering radius R(L) of an n-dimensional lattice L is the radius of smallest balls with centres at points of L which cover the whole space spanned by L. R(L) is closely related to minimal vectors of classes of the quotient . The convex hull of all minimal vectors of a class Q is a Delaunay polytope P(Q) of dimension ≤, dimension of L. Let be a maximal squared radius of P(Q) of dimension n (of dimension less than n, respectively). If , then . This is the case in the well-known Barnes-Wall and Leech lattices. Otherwise, . This is a refinement of a result of Norton ([3], Ch. 22).
We prove a generalization of a theorem of Ryshkov relating the Voronoï vectors of lattices to the defining conditions for the Minkowski fundamental domain . This is then used to prove that a Minkowski reduced basis of a lattice of dimension n < 7 consists of strict Voronoï vectors.
It is shown that in all dimensions n ≥ 11 there exists a lattice which is generated by its minimal vectors but in which no set of n minimal vectors forms a basis.
Let 1 ≤ M ≤ N − 1 be integers and K be a convex, symmetric set in Euclidean N-space. Associated with K and M, Mahler identified the Mth compound body of K, (K)m, in Euclidean (MN)-space. The compound body (K)M is describable as the convex hull of a certain subset of the Grassmann manifold in Euclidean (MN)-space determined by K and M. The sets K and (K)M are related by a number of well-known inequalities due to Mahler.
Here we generalize this theory to the geometry of numbers over the adèle ring of a number field and prove theorems which compare an adelic set with its adelic compound body. In addition, we include a comparison of the adelic compound body with the adelic polar body and prove an adelic general transfer principle which has implications to Diophantine approximation over number fields.
We obtain explicit lower bounds on the lattice packing densities δL of superballs G of quite a general nature, and we conjecture that as the dimension n approaches infinity, the bounds are asymptotically exact. If the conjecture were true, it would follow that the maximum lattice-packing density of the Iσ-ball is 2−n(1+σ(1)) for each σ in the interval 1 ≤ σ ≤ 2.
A well-known theorem of Hardy and Littlewood gives a three-term asymptotic formula, counting the lattice points inside an expanding, right triangle. In this paper a generalisation of their theorem is presented. Also an analytic method is developed which enables one to interpret the coefficients in the formula. These methods are combined to give a generalisation of a “heightcounting” formula of Györy and Pethö which itself was a generalisation of a theorem of Lang.
The n-dimensional cross polytope, |x|+|x2|+…+|xn≤1, can be lattice packed with density δ satisfying
but proofs of this, such as the Minkowski-Hlawka theorem, do not actually provide such packings. That is, they are nonconstructive. Here we exhibit lattice packings whose density satisfies only
but by a highly constructive method. These are the densest constructive lattice packings of cross polytopes obtained so far.
The best lattice quantizers seem to be duals of extreme lattices. The quantizing constant associated with the dual lattice of Barnes's senary form φ6 is found, together with a new type of quantizing technique. The quantizing constant is better than expected in the sense that it is better than D*6 even though D6 provides a denser packing. This is the smallest dimension for which this occurs.
One may perhaps doubt whether in the geometry of numbers any particular family of lattices deserves such an attention as, for example, BCH codes receive in coding theory. However, only recently a quite interesting family has emerged. The general case of these lattices considered by Rosenbloom and Tsfasman [5, Section 2] parallels Goppa's construction of codes from algebraic curves. Here we shall take a closer look at the case of genus zero where some special features of Goppa's early codes will show up again: There is a lattice Λ (L, g) in n-dimensional euclidean space associated with a subset L of the field, and a polynomial g satisfying g(є) ≠ for all λ є L. For g = zd previously known sphere packings are recovered and generalized. A nonconstructive argument shows that for n → ∞ and some irreducible polynomials g Minkowski's lower packing bound is met (this being not achieved in [5] where q is fixed, but the genus grows; cf. also [4]).
John Conway's analysis in 1968 of the automorphism group of the Leech lattice and his discovery of three sporadic simple groups led to the immediate speculation that other Z-lattices might have interesting automorphism groups which give rise to (possibly new) finite simple groups. (The classification theorem for the finite simple groups has since told us that no new finite simple groups can arise in this or any other way.) For example in 1973, M. Broué and M. Enguehard constructed, in every dimension 2n, an even lattice (unimodular if n is odd) whose automorphism group is related to the simple Chevalley group of type Dn. This family of integral lattices received attention and acclaim in the subsequent literature. What escaped the attention of this literature, however, was the fact that these lattices had been discovered years earlier. Indeed in 1959, E. S. Barnes and G. E. Wall gave a uniform construction for a large class of positive definite Z-lattices in dimensions 2n which include those of Broué and Enguehard as special cases. The present article introduces an abstracted and generalized version of the construction of Barnes and Wall. In addition, there are some new observations about Barnes-Wall lattices. In particular, it is shown how to associate to each such lattice a continuous, piecewise linear graph in the plane from which all the important properties of the lattice, for example, its minimum, whether it is integral, unimodular, even, or perfect can be read off directly.