We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we propose a Static Condensation Reduced Basis Element (SCRBE) approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is a computational tool that allows to efficiently analyze parametrized structures which can be decomposed into a large number of similar components. Here, we extend the methodology to allow for a more general domain decomposition, a typical example being a checkerboard-pattern assembled from similar components. To this end, we extend the formulation and associated a posteriori error bound procedure. Our motivation comes from the analysis of the pressure distribution in plain journal bearings governed by the RLE. However, the SCRBE approach presented is not limited to bearings and the RLE, but directly extends to other component-based systems. We show numerical results for plain bearings to demonstrate the validity of the proposed approach.
It is well-known that the traditional full integral quadrilateral element fails to provide accurate results to the Helmholtz equation with large wave numbers due to the “pollution error” caused by the numerical dispersion. To overcome this deficiency, this paper proposed an element decomposition method (EDM) for analyzing 2D acoustic problems by using quadrilateral element. In the present EDM, the quadrilateral element is first subdivided into four sub-triangles, and the local acoustic gradient in each sub-triangle is obtained using linear interpolation function. The acoustic gradient field of the whole quadrilateral is then formulated through a weighted averaging operation, which means only one integration point is adopted to construct the system matrix. To cure the numerical instability of one-point integration, a variation gradient item is complemented by variance of the local gradients. The discretized system equations are derived using the generalized Galerkin weakform. Numerical examples demonstrate that the EDM can achieves better accuracy and higher computational efficiency. Besides, as no mapping or coordinate transformation is involved, restrictions on the shape elements can be easily removed, which makes the EDM works well even for severely distorted meshes.
We study the gradient superconvergence of bilinear finite volume element (FVE) solving the elliptic problems. First, a superclose weak estimate is established for the bilinear form of the FVE method. Then, we prove that the gradient approximation of the FVE solution has the superconvergence property:
where denotes the average gradient on elements containing point P and S is the set of optimal stress points composed of the mesh points, the midpoints of edges and the centers of elements.
In this paper, a priori error estimates are derived for the mixed finite element discretization of optimal control problems governed by fourth order elliptic partial differential equations. The state and co-state are discretized by Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. The error estimates derived for the state variable as well as those for the control variable seem to be new. We illustrate with a numerical example to confirm our theoretical results.
A moving mesh method is proposed for solving reaction-diffusion equations. The finite element method is used to solving the partial different equation system, and an efficient numerical scheme is applied to implement mesh moving. In the practical calculations, the moving mesh step and the problem equation solver are performed alternatively. Several numerical examples are presented, including the Gray-Scott, the Activator-Inhibitor and a case with a growing domain. It is illustrated numerically that the moving mesh methods costs much lower, compared with the numerical schemes on a fixed mesh. Even in the case of complex pattern dynamics described by the reaction-diffusion systems, the adapted meshes can capture the details successfully.
In this paper, we present two adaptive methods for the basis enrichment of the mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving the flow problem in heterogeneous media. We develop an a-posteriori error indicator which depends on the norm of a local residual operator. Based on this indicator, we construct an offline adaptive method to increase the number of basis functions locally in coarse regions with large local residuals. We also develop an online adaptive method which iteratively enriches the function space by adding new functions computed based on the residual of the previous solution and special minimum energy snapshots. We show theoretically and numerically the convergence of the two methods. The online method is, in general, better than the offline method as the online method is able to capture distant effects (at a cost of online computations), and both methods have faster convergence than a uniform enrichment. Analysis shows that the online method should start with a certain number of initial basis functions in order to have the best performance. The numerical results confirm this and show further that with correct selection of initial basis functions, the convergence of the online method can be independent of the contrast of the medium. We consider cases with both very high and very low conducting inclusions and channels in our numerical experiments.
The radiative transfer equation (RTE) arises in many different areas of science and engineering. In this paper, we propose and investigate a discrete-ordinate discontinuous-streamline diffusion (DODSD) method for solving the RTE, which is a combination of the discrete-ordinate technique and the discontinuous-streamline diffusion method. Different from the discrete-ordinate discontinuous Galerkin (DODG) method for the RTE, an artificial diffusion parameter is added to the test functions in the spatial discretization. Stability and error estimates in certain norms are proved. Numerical results show that the proposed method can lead to a more accurate approximation in comparison with the DODG method.
In this paper, the second order convergence of the interpolation based on -element is derived in the case of d=1, 2 and 3. Using the integral average on each element, the new basis functions of tensor product type is builded up and we can easily extend it to the higher dimensional case. Finally, some numerical tests are made to show the analytical results of the interpolation errors.
This article is devoted to the study of the finite element approximation for a nonlocal nonlinear parabolic problem. Using a linearised Crank-Nicolson Galerkin finite element method for a nonlinear reaction-diffusion equation, we establish the convergence and error bound for the fully discrete scheme. Moreover, important results on exponential decay and vanishing of the solutions in finite time are presented. Finally, some numerical simulations are presented to illustrate our theoretical analysis.
We propose amixed spectral method for heat transfer in unbounded domains, using generalised Hermite functions and Legendre polynomials. Some basic results on the mixed generalised Hermite-Legendre orthogonal approximation are established, which plays important roles in spectral methods for various problems defined on unbounded domains. As an example, the mixed generalised Hermite-Legendre spectral scheme is constructed for anisotropic heat transfer. Its convergence is proven, and some numerical results demonstrate the spectral accuracy of this approach.
In order to overcome the possible singularity associated with the Point Interpolation Method (PIM), the Radial Point Interpolation Method (RPIM) was proposed by G. R. Liu. Radial basis functions (RBF) was used in RPIM as basis functions for interpolation. All these radial basis functions include shape parameters. The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory. The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM. The RPIM is studied based on the global Galerkin weak form performed using two integration technics: classical Gaussian integration and the strain smoothing integration scheme. The numerical performance of this method is tested on their behavior on curve fitting, and on three elastic mechanical problems with regular or irregular nodes distributions. A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system. All resulting RPIM methods perform very well in term of numerical computation. The Smoothed Radial Point Interpolation Method (SRPIM) shows a higher accuracy, especially in a situation of distorted node scheme.
In this paper we extend the idea of interpolated coefficients for a semilinear problem to the quadratic triangular finite volume element method. At first we introduce quadratic triangular finite volume element method with interpolated coefficients for a boundary value problem of semilinear elliptic equation. Next we derive convergence estimate in H1-norm, L2-norm and L∞-norm, respectively. Finally an example is given to illustrate the effectiveness of the proposed method.
Fixed-point iterative sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweeping order. Different from other fast sweeping methods, fixed-point iterative sweeping methods have the advantages such as that they have explicit forms and do not involve inverse operation of nonlinear local systems. In principle, it can be applied in solving very general equations using any monotone numerical fluxes and high order approximations easily. In this paper, based on the recently developed fifth order WENO schemes which improve the convergence of the classical WENO schemes by removing slight post-shock oscillations, we design fifth order fixed-point sweeping WENO methods for efficient computation of steady state solution of hyperbolic conservation laws. Especially, we show that although the methods do not have linear computational complexity, they converge to steady state solutions much faster than regular time-marching approach by stability improvement for high order schemes with a forward Euler time-marching.
The goal of this work is to construct and study hybrid and multiplicative two-level overlapping Schwarz algorithms with standard coarse spaces for the almost incompressible linear elasticity and Stokes systems, discretized by mixed finite and spectral element methods with discontinuous pressures. Two different approaches are considered to solve the resulting saddle point systems: a) a preconditioned conjugate gradient (PCG) method applied to the symmetric positive definite reformulation of the almost incompressible linear elasticity system obtained by eliminating the pressure unknowns; b) a GMRES method with indefinite overlapping Schwarz preconditioner applied directly to the saddle point formulation of both the elasticity and Stokes systems. Condition number estimates and convergence properties of the proposed hybrid and multiplicative overlapping Schwarz algorithms are proven for the positive definite reformulation of almost incompressible elasticity. These results are based on our previous study [8] where only additive Schwarz preconditioners were considered for almost incompressible elasticity. Extensive numerical experiments with both finite and spectral elements show that the proposed overlapping Schwarz preconditioners are scalable, quasi-optimal in the number of unknowns across individual subdomains and robust with respect to discontinuities of the material parameters across subdomains interfaces. The results indicate that the proposed preconditioners retain a good performance also when the quasi-monotonicity assumption, required by the available theory, does not hold.
An optimal control problem is considered to find a stable surface traction, which minimizes the discrepancy between a given displacement field and its estimation. Firstly, the inverse elastic problem is constructed by variational inequalities, and a stable approximation of surface traction is obtained with Tikhonov regularization. Then a finite element discretization of the inverse elastic problem is analyzed. Moreover, the error estimation of the numerical solutions is deduced. Finally, a numerical algorithm is detailed and three examples in two-dimensional case illustrate the efficiency of the algorithm.
In this paper, we present two-level defect-correction finite element method for steady Navier-Stokes equations at high Reynolds number with the friction boundary conditions, which results in a variational inequality problem of the second kind. Based on Taylor-Hood element, we solve a variational inequality problem of Navier-Stokes type on the coarse mesh and solve a variational inequality problem of Navier-Stokes type corresponding to Newton linearization on the fine mesh. The error estimates for the velocity in the H1 norm and the pressure in the L2 norm are derived. Finally, the numerical results are provided to confirm our theoretical analysis.
In this paper, we investigate the error estimates of mixed finite element methods for optimal control problems governed by general elliptic equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We derive L2 and H–1-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.
This paper provides a proof of robustness of the restricted additive Schwarz preconditioner with harmonic overlap (RASHO) for the second order elliptic problems with jump coefficients. By analyzing the eigenvalue distribution of the RASHO preconditioner, we prove that the convergence rate of preconditioned conjugate gradient method with RASHO preconditioner is uniform with respect to the large jump and meshsize.
Extended hydrodynamic models for carrier transport are derived from the semiconductor Boltzmann equation with relaxation time approximation of the scattering term, by using the globally hyperbolic moment method and the moment-dependent relaxation time. Incorporating the microscopic relaxation time and the applied voltage bias, a formula is proposed to determine the relaxation time for each moment equation, which sets different relaxation rates for different moments such that higher moments damp faster. The resulting models would give more satisfactory results of macroscopic quantities of interest with a high-order convergence to those of the underlying Boltzmann equation as the involved moments increase, in comparison to the corresponding moment models using a single relaxation time. In order to simulate the steady states efficiently, a multigrid solver is developed for the derived moment models. Numerical simulations of an n+-n-n+ silicon diode are carried out to demonstrate the validation of the presented moment models, and the robustness and efficiency of the designed multigrid solver.
We study the exciton diffusion in organic semiconductors from a macroscopic viewpoint. In a unified way, we conduct the equivalence analysis between Monte-Carlo method and diffusion equation model for photoluminescence quenching and photocurrent spectrum measurements, in both the presence and the absence of Förster energy transfer effect. Connections of these two models to Stern-Volmer method and exciton-exciton annihilation method are also specified for the photoluminescence quenching measurement.