To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider scheduling a batch of jobs with stochastic processing times on single or parallel machines, with the objective of minimizing the expected holding costs. Preemption of jobs is allowed, and the holding costs of preempted jobs may depend on the stage of completion. We provide a new proof of the optimality of a Gittins priority rule for the single machine and use the same proof to show that the Gittins priority rule is nearly optimal for parallel machines.
We consider M/G/1 queues with exhaustive service and generalized vacations, where at the end of every busy period the server either follows a mixed vacation policy from a given vacation policy set or stays idle. A simple recursive formula for the moments of the stationary waiting time is provided. This formula results in the decomposition property for our model immediately. It also enables us to derive many existing results for the M/G/1 queues with various vacation policies.
This paper introduces a new form of local balance and the corresponding product-form results. It is shown that these new product-form results allow capacity constraints at the stations of a queueing network without reversibility assumptions and without special blocking protocols. In particular, exact product-form results for heavily loaded queueing networks are obtained.
A new partial ordering among life distributions in terms of their uncertainties is introduced. Our measure of uncertainty is Shannon information applied to the residual lifetime. The relationship between this ordering and various existing orderings of life distributions are discussed. Various properties of our proposed concept are examined. Based on our proposed ordering and various existing orderings, the notion of a ‘better system' is introduced.
In this paper, an optimal maintenance model for standby systems is studied. An inspection–repair–replacement policy is employed. Assume that the state of the system can only be determined through an inspection which may incorrectly identify the system state. After each inspection, if the system is identified as in the down state, a repair action will be taken. It will be replaced some time later by a new and identical one. The problem is to determine an optimal policy so that the availability of the system is high enough at any time and the long-run expected cost per unit time is minimized. An explicit expression for the long-run expected cost per unit time is derived. For a geometric model, a simple algorithm for the determination of an optimal solution is suggested.
In this paper, we derive the MacLaurin series of the mean waiting time in light traffic for a GI/G/1 queue. The light traffic is defined by random thinning of the arrival process. The MacLaurin series is derived with respect to the admission probability, and we prove that it has a positive radius of convergence. In the numerical examples, we use the MacLaurin series to approximate the mean waiting time beyond light traffic by means of Padé approximation.
There are some generalised semi-Markov processes (GSMP) which are insensitive, that is the value of some performance measures for the system depend only on the mean value of lifetimes and not on their actual distribution. In most cases this is not true and a performance measure can take on a number of values depending on the lifetime distributions. In this paper we present a method for finding tight bounds on the sensitivity of performance measures for the class of GSMPs with a single generally distributed lifetime. Using this method we can find upper and lower bounds for the value of a function of the stationary distribution as the distribution of the general lifetime ranges over a set of distributions with fixed mean. The method is applied to find bounds on the average queue length of the Engset queue and the time congestion in the GI/M/n/n queueing system.
Allocation of a redundant component in a system in order to optimize, in some sense, the lifetime of the system is an important problem in reliability theory, having practical applications. Consider a series system consisting of two components (say C1 and C2), having independent random lifetimes X1 and X2, and suppose a component C having random lifetime X (independent of X1 and X2) is available for active redundancy with one of the components. Let U1 = min(max(X1, X), X2) and U2 = min(X1, max(X2, X)), so that U1 (U2) denote the lifetime of a system obtained by allocating C to C1 (C2). We consider the criterion where C1 is preferred to C2 for redundancy allocation if . Here we investigate the problem of allocating C to C1 or C2, with respect to the above criterion. We also consider the standby redundancy for series and parallel systems with respect to the above criterion. The problem of allocating an active redundant component in order that the resulting system has the smallest failure rate function is also considered and it is observed that unlike stochastic optimization, here the lifetime distribution of the redundant component also plays a role, making the problem of even active redundancy allocation more complex.
In this paper we study the departure process of M/G/1 queueing models with a single server vacation and multiple server vacations. The arguments employed are direct probability decomposition, renewal theory and the Laplace–Stieltjes transform. We discuss the distribution of the interdeparture time and the expected number of departures occurring in the time interval (0, t] from the beginning of the state i (i = 0, 1, 2, ···), and provide a new method for analysis of the departure process of the single-server queue.
Kalashnikov and Rachev (1986) have proposed a partial ordering of life distributions which is equivalent to an increasing hazard ratio, when the ratio exists. This model can represent the phenomenon of crossing hazards, which has received considerable attention in recent years. In this paper we study this and two other models of relative ageing. Their connections with common partial orderings in the reliability literature are discussed. We examine the closure properties of the three orderings under several operations. Finally, we give reliability and moment bounds for a distribution when it is ordered with respect to a known distribution.
Modeling of manufacturing lines and data communications makes frequent use of tandem queues with blocking. Here we present and study such a system with a k-stage blocking scheme in which processing in each station requires attendance of the server of that station together with the servers of the next k – 1 stations. This scheme describes the conventional manufacturing and communications blocking schemes but is also representative of a wider range of applications. Explicit expressions for residence times, throughput, queueing times, waiting times and other measures of performance are obtained for the case of communications type flow and just-in-time input. Use of the results in modeling and analyzing a highway traffic flow situation is presented.
We consider a class of G/G/1 queueing models with independent generalized setup time and exhaustive service. It is shown that a variety of single-server queueing systems with service interruption are special cases of our model. We give a simple computational scheme for the moments of the stationary waiting time and sojourn time. Our numerical investigations indicate that the algorithm is quite accurate and fast in general. For the M/G/1 case, we are able to derive a recursive formula for the moments of the stationary waiting time, which includes the Takács formula as a special case. It immediately results in the stochastic decompòsition property which can be found in the literature.
The paper deals with large trunk line systems of the type appearing in telephone networks. There are many nodes or input sources, each pair of which is connected by a trunk line containing many individual circuits. Traffic arriving at either end of a trunk line wishes to communicate to the node at the other end. If the direct route is full, a rerouting might be attempted via an alternative route containing several trunks and connecting the same endpoints. The basic questions concern whether to reroute, and if so how to choose the alternative path. If the network is ‘large’ and fully connected, then the overflow traffic which is offered for rerouting to any trunk comes from many other trunks in the network with no one dominating. In this case one expects that some sort of averaging method can be used to approximate the rerouting requests and hence simplify the analysis. Essentially, the overflow traffic that a trunk offers the network for rerouting is in some average sense similar to the overflow traffic offered to that trunk. Indeed, a formalization of this idea involves the widely used (but generally heuristic) ‘fixed point' approximation method. One sets up the fixed point equations for appropriate rerouting strategies and then solves them to obtain an approximation to the system loss. In this paper we work in the heavy traffic regime, where the external offered traffic to any trunk is close to the service capacity of that trunk. It is shown that, as the number of links and circuits within each link go to infinity and for a variety of rerouting strategies, the system can be represented by an averaged limit. This limit is a reflected diffusion of the McKean–Vlasov (propagation of chaos) type, where the driving terms depend on the mean values of the solution of the equation. The averages occur due to the symmetry of the network and the averaging effects of the many interactions. This provides a partial justification for the fixed point method. The concrete dynamical systems flavor of the approach and the representations of the limit processes provide a useful way of visualizing the system and promise to be useful for the development of numerical methods and further analysis.
We obtain explicit upper bounds in closed form for the queue length in a slotted time FCFS queue in which the service requirement is a sum of independent Markov processes on the state space {0, 1}, with integral service rate. The bound is of the form [queue length for any where c < 1 and y > 1 are given explicitly in terms of the parameters of the model. The model can be viewed as an approximation for the burst-level component of the queue in an ATM multiplexer. We obtain heavy traffic bounds for the mean queue length and show that for typical parameters this far exceeds the mean queue length for independent arrivals at the same load. We compare our results on the mean queue length with an analytic expression for the case of unit service rate, and compare our results on the full distribution with computer simulations.
We consider preemptive scheduling on parallel machines where the number of available machines may be an arbitrary, possibly random, function of time. Processing times of jobs are from a family of DLR (decreasing likelihood ratio) distributions, and jobs may arrive at random agreeable times. We give a constructive coupling proof to show that LEPT stochastically minimizes the makespan, and that it minimizes the expected cost when the cost function satisfies certain agreeability conditions.
Choi and Park [2] derived an expression for the joint stationary distribution of the number of customers of k types who arrive in batches at an infinite-server system of M/M/∞ type. We propose another method of solving this problem and extend the result to the case of general service times (not necessarily independent). We also get a transient solution. Our main result states that the k- dimensional vector of the number of customers of k types in the system is a certain linear function of a (2k – 1)-dimensional vector whose coordinates are independent Poisson random variables.
An object is hidden in one of two boxes and occasionally moves between the boxes in accordance with some specified continuous-time Markov process. The objective is to find the object with a minimal expected cost. In this paper it is assumed that search efforts are unlimited. In addition to the search costs, the ‘real time' until the object is found is also taken into account in the cost structure. Our main results are that the optimal policy may consist of five regions and that the controls applied should be of the extreme 0 or ∞ type. The resulting expected cost compares favorably with that of the expected cost with bounded controls studied previously in the search literature.
In this paper we obtain the Beňes equation for the evolution of the probability distribution of the excursion process associated with the level crossings of a general storage process. We then show that under stationarity and ergodicity assumptions on the process we can recover the well-known rate conservation law (RCL). Using the stationary solution we then show that the existence of an invariant solution can be studied in terms of an operator equation and we show how this characterization leads to a very simple explicit computation of the stationary distribution.
Existence and finiteness of the sample-mean limit of sojourn times of jobs in a queueing system are investigated. The queueing system operates under rather general multiprocessor disciplines allowing job classes and priorities. The input stream of jobs consisting of job classes and interarrival and processing times is stationary and ergodic and may contain batch arrivals. Existence of the sample-mean limit is proved by means of the superadditive ergodic theorem, and its finiteness is controlled by uniform mixing of the input stream.