We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The computer age and the phenomenological complexity of the AIDS/HIV epidemic have engendered a rich profusion of deterministic and stochastic time series models for the development of an epidemic. The present study examines the reliability of deterministic approximations of fundamentally random processes. Through numerical analysis and probabilistic considerations, we derive absolute and simultaneous confidence interval bounding techniques, and offer a practical procedure based on these developments. A heartening aspect of the computational study presented at the close of this paper indicates that when the population size is in the thousands, the deterministic version to the classical logistic epidemic is a good approximation.
In this paper, we develop mathematical machinery for verifying that a broad class of general state space Markov chains reacts smoothly to certain types of perturbations in the underlying transition structure. Our main result provides conditions under which the stationary probability measure of an ergodic Harris-recurrent Markov chain is differentiable in a certain strong sense. The approach is based on likelihood ratio ‘change-of-measure' arguments, and leads directly to a ‘likelihood ratio gradient estimator' that can be computed numerically.
The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.
We consider the problem of conditioning a continuous-time Markov chain (on a countably infinite state space) not to hit an absorbing barrier before time T; and the weak convergence of this conditional process as T → ∞. We prove a characterization of convergence in terms of the distribution of the process at some arbitrary positive time, t, introduce a decay parameter for the time to absorption, give an example where weak convergence fails, and give sufficient conditions for weak convergence in terms of the existence of a quasi-stationary limit, and a recurrence property of the original process.
We consider non-homogeneous Markov chains generated by the simulated annealing algorithm. We classify states according to asymptotic properties of trajectories. We identify recurrent and transient states. The set of recurrent states is partitioned into disjoint classes of asymptotically communicating states. These classes correspond to atoms of the tail sigma-field. The results are valid under the weak reversibility assumption of Hajek.
This paper considers a model for the spread of an epidemic in a closed population whose members are in either a high-risk or a low-risk activity group. Further, members of the high-risk group may change their behaviour by entering the low-risk group. Both stochastic and deterministic models are examined. A limiting model, appropriate when there is a large number of initially susceptible individuals, is used to provide a threshold analysis. The epidemic is compared to a single group epidemic, and to suitably parametrised two-group epidemics, using a coupling method. The total size distribution and effects of changing the behaviour change rate are considered.
The move-to-front scheme is studied taking into account some forms of Markov dependence for the way items are requested. One of the dependences specifically rules out two consecutive requests for the same item. The other is the so-called p-correlation. An expression for the stationary distribution of the sequence of arrangements of items is given in each case. A necessary and sufficient condition for these distributions to belong to a particular class of distributions is also given. The mean search time for an item is calculated for each form of dependence and these are compared with the value obtained in the case of independent requests. Some properties of the sequence of requests are given. Finally, an expression for the variance of the search time is obtained.
We consider a migration process whose singleton process is a time-dependent Markov replacement process. For the singleton process, which may be treated as either open or closed, we study the limiting distribution, the distribution of the time to replacement and related quantities. For a replacement process in equilibrium we obtain a version of Little's law and we provide conditions for reversibility. For the resulting linear population process we characterize exponential ergodicity for two types of environmental behaviour, i.e. either convergent or cyclic, and finally for large population sizes a diffusion approximation analysis is provided.
We investigate the stationarity of minification processes when the marginal is a discrete distribution. There is a close relationship between the problem considered by Arnold and Isaacson (1976) and the stationarity in minification processes. We give a necessary and sufficient condition for a discrete distribution to be the marginal of a stationary minification process. Members of the Poisson and negative binomial families can be the marginals of stationary minification processes. The geometric minification process is studied in detail, and two characterizations of it based on the structure of the innovation process are given.
This work considers items (e.g. books, files) arranged in an array (e.g. shelf, tape) with N positions and assumes that items are requested according to a Markov chain (possibly, of higher order). After use, the requested item is returned to the leftmost position of the array. Successive applications of the procedure above give rise to a Markov chain on permutations. For equally likely items, the number of requests that makes this Markov chain close to its stationary state is estimated. To achieve that, a coupling argument and the total variation distance are used. Finally, for non-equally likely items and so-called p-correlated requests, the coupling time is presented as a function of the coupling time when requests are independent.
Convergence results are given for transient characteristics of an M/M/∞ system such as the period of time the occupation process remains above a given state, the area swept by this process above this state and the number of customers arriving during this period. These results are precise in contrast to approximations derived in the framework of the Poisson clumping heuristic introduced by Aldous.
We extend large exceedence results for i.i.d. -valued random variables to a class of uniformly recurrent Markov-additive processes and stationary strong-mixing processes. As in the i.i.d. case, the results are proved via large deviations estimates.
Asymptotic formulas for means and variances of a multitype decomposable age-dependent supercritical branching process are derived. This process is a generalization of the Kendall–Neyman–Scott two-stage model for tumor growth. Both means and variances have exponential growth rates as in the case of the Markov branching process. But unlike Markov branching, these asymptotic moments depend on the age of the original individual at the start of the process and the life span distribution of the progenies.
We introduce a stochastic process with discrete time and countable state space that is governed by a sequence of Markov matrices . Each Pm is used for a random number of steps Tm and is then replaced by Pm+1. Tm is a randomized stopping time that may depend on the most recent part of the state history. Thus the global character of the process is non-Markovian.
This process can be used to model the well-known simulated annealing optimization algorithm with randomized, partly state depending cooling schedules. Generalizing the concept of strong stationary times (Aldous and Diaconis [1]) we are able to show the existence of optimal schedules and to prove some desirable properties. This result is mainly of theoretical interest as the proofs do not yield an explicit algorithm to construct the optimal schedules.
We consider a stochastic model for the spread of an epidemic amongst a closed homogeneously mixing population, in which there are several different types of infective, each newly infected individual choosing its type at random from those available. The model is based on the carrier-borne model of Downton (1968), as extended by Picard and Lefèvre (1990). The asymptotic distributions of final size and area under the trajectory of infectives are derived as the initial population becomes large, using arguments based on those of Scalia-Tomba (1985), (1990). We then use our limiting results to compare the asymptotic final size distribution of our model with that of a related multi-group model, in which the type of each infective is assigned deterministically.
We present a method of deriving the limiting distributions of the number of occurrences of success (S) runs of length k for all types of runs under the Markovian structure with stationary transition probabilities. In particular, we consider the following four bestknown types. 1. A string of S of exact length k preceded and followed by an F, except the first run which may not be preceded by an F, or the last run which may not be followed by an F. 2. A string of S of length k or more. 3. A string of S of exact length k, where recounting starts immediately after a run occurs. 4. A string of S of exact length k, allowing overlapping runs. It is shown that the limits are convolutions of two or more distributions with one of them being either Poisson or compound Poisson, depending on the type of runs in question. The completely stationary Markov case and the i.i.d. case are also treated.
We investigate the asymptotic sample path behaviour of a randomly perturbed discrete-time dynamical system. We consider the case where the trajectories of the non-perturbed dynamical system are attracted by a finite number of limit sets and characterize a case where this property remains valid for the perturbed dynamical system when the perturbation converges to zero. For this purpose, no further assumptions on the perturbation are needed and our main condition applies to the limit sets of the non-perturbed dynamical system. When the limit sets reduce to limit points we show that this main condition is more general than the usual assumption of the existence of a Lyapunov function for the non-perturbed dynamical system. An application to an epidemic model is given to illustrate our results.
Let X(t) be a non-homogeneous birth and death process. In this paper we develop a general method of estimating bounds for the state probabilities for X(t), based on inequalities for the solutions of the forward Kolmogorov equations. Specific examples covered include simple estimates of Pr(X(t) < j | X(0) = k) for the M(t)/M(t)/N/0 and M(t)/M(t)/N queue-length processes.
In this paper we prove the validity of the Volterra integral equation for the evaluation of first-passage-time probability densities through varying boundaries, given by Buonocore et al. [1], for the case of diffusion processes not necessarily time-homogeneous. We study, specifically those processes that can be obtained from the Wiener process in the sense of [5]. A study of the kernel of the integral equation, in the same way as that by Buonocore et al. [1], is done. We obtain the boundaries for which closed-form solutions of the integral equation, without having to solve the equation, can be obtained. Finally, a few examples are given to indicate the actual use of our method.
We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u1< u2< · ·· and d1d2< · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is
for a suitable R and some R–1-harmonic function f and R–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R–1µ = µQ).
The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.