We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on whether or not the process is evanescent. In the former case we shall relax the condition that absorption is certain. Furthermore, we shall allow for the possibility that the minimal process might be explosive, so that the transition rates alone will not necessarily determine the birth-death process uniquely. Although we shall be concerned mainly with the minimal process, our most general results hold for any birth-death process whose transition probabilities satisfy both the backward and the forward Kolmogorov differential equations.
We consider a discrete-time birth-death process on the non-negative integers with −1 as an absorbing state and study the limiting behaviour as n → ∞ of the process conditioned on non-absorption until time n. By proving that a condition recently proposed by Martinez and Vares is vacuously true, we establish that the conditioned process is always weakly convergent when all self-transition probabilities are zero. In the aperiodic case we obtain a necessary and sufficient condition for weak convergence.
We consider the problem of the optimal duration of a burn-in experiment for n identical units with conditionally exponential life-times of unknown parameter Λ. The problem is formulated as an optimal stopping problem for a suitably defined two-dimensional continuous-time Markov process. By exploiting monotonicity properties of the statistical model and of the costs we prove that the optimal stopping region is monotone (according to an appropriate definition) and derive a set of equations that uniquely determine it and that can be easily solved recursively. The optimal stopping region varies monotonically with the costs. For the class of problems corresponding to a prior distribution on Λ of type gamma it is shown how the optimal stopping region varies with respect to the prior distribution and with respect to n.
We consider extreme value theory for a class of stationary Markov chains with values in ℝd. The asymptotic distribution of Mn, the vector of componentwise maxima, is determined under mild dependence restrictions and suitable assumptions on the marginal distribution and the transition probabilities of the chain. This is achieved through computation of a multivariate extremal index of the sequence, extending results of Smith [26] and Perfekt [21] to a multivariate setting. As a by-product, we obtain results on extremes of higher-order, real-valued Markov chains. The results are applied to a frequently studied random difference equation.
A continuous-time threshold autoregressive process of order two (CTAR(2)) is constructed as the first component of the unique (in law) weak solution of a stochastic differential equation. The Cameron–Martin–Girsanov formula and a random time-change are used to overcome the difficulties associated with possible discontinuities and degeneracies in the coefficients of the stochastic differential equation. A sequence of approximating processes that are well-suited to numerical calculations is shown to converge in distribution to a solution of this equation, provided the initial state vector has finite second moments. The approximating sequence is used to fit a CTAR(2) model to percentage relative daily changes in the Australian All Ordinaries Index of share prices by maximization of the ‘Gaussian likelihood'. The advantages of non-linear relative to linear time series models are briefly discussed and illustrated by means of the forecasting performance of the model fitted to the All Ordinaries Index.
This paper studies the expected average cost control problem for discrete-time Markov decision processes with denumerably infinite state spaces. A sequence of finite state space truncations is defined such that the average costs and average optimal policies in the sequence converge to the optimal average cost and an optimal policy in the original process. The theory is illustrated with several examples from the control of discrete-time queueing systems. Numerical results are discussed.
This paper compares the convergence rate properties of three storage models (dams) driven by time-homogeneous jump process input: the infinitely high dam, the finite dam, and the infinitely deep dam. We show that the convergence rate of the infinitely high dam depends on the moment properties of the input process, the finite dam always approaches its limiting distribution exponentially fast, and the infinitely deep dam approaches its limiting distribution exponentially fast under very general conditions. Our methods make use of rate results for regenerative processes and several sample path orderings.
This paper is devoted to studying an extended class of time-continuous branching processes, motivated by the study of stochastic control theory and interacting particle systems. The uniqueness, extinction, recurrence and positive recurrence criteria for the processes are presented. The main new point in our proofs is the use of several different comparison methods. The resulting picture shows that the methods are effective and hence should also be meaningful in other situations.
We derive a variety of estimates for the survival probability of a branching process in a random environment. There are three cases of interest, the critical, weakly and strongly subcritical. The large deviation result, first obtained by Dekking for the class of finite state space i.i.d. environments, is shown to hold in more general environments. We also obtain some finer convergence results.
The empty space function of a stationary point process in ℝd is the function that assigns to each r, r > 0, the probability that there is no point within distance r of O. In a recent paper Van Lieshout and Baddeley study the so-called J-function, which is defined as the ratio of the empty space function of a stationary point process and that of its corresponding reduced Palm process. They advocate the use of the J-function as a characterization of the type of spatial interaction.
Therefore it is natural to ask whether J ≡ 1 implies that the point process is Poisson. We restrict our analysis to the one-dimensional case and show that a classical construction by Szász provides an immediate counterexample. In this example the interpoint distances are still exponentially distributed. This raises the question whether it is possible to have J ≡ 1 but non-exponentially distributed interpoint distances. We construct a point process with J ≡ 1 but where the interpoint distances are bounded.
The gating mechanism of a single ion channel is usually modelled by a continuous-time Markov chain with a finite state space. The state space is partitioned into two classes, termed ‘open’ and ‘closed’, and it is possible to observe only which class the process is in. In many experiments channel openings occur in bursts. This can be modelled by partitioning the closed states further into ‘short-lived’ and ‘long-lived’ closed states, and defining a burst of openings to be a succession of open sojourns separated by closed sojourns that are entirely within the short-lived closed states. There is also evidence that bursts of openings are themselves grouped together into clusters. This clustering of bursts can be described by the ratio of the variance Var (N(t)) to the mean [N(t)] of the number of bursts of openings commencing in (0, t]. In this paper two methods of determining Var (N(t))/[N(t)] and limt→∝ Var (N(t))/[N(t)] are developed, the first via an embedded Markov renewal process and the second via an augmented continuous-time Markov chain. The theory is illustrated by a numerical study of a molecular stochastic model of the nicotinic acetylcholine receptor. Extensions to semi-Markov models of ion channel gating and the incorporation of time interval omission are briefly discussed.
Let X be a birth and death process on with absorption at zero and suppose that X is suitably recurrent, irreducible and non-explosive. In a recent paper, Roberts and Jacka (1994) showed that as T → ∞ the process conditioned to non-absortion until time T converges weakly to a time-homogeneous Markov limit, X∞, which is itself a birth and death process. However the question of the possibility of explosiveness of X∞ remained open. The major result of this paper establishes that X∞ is always non-explosive.
An M/M/1 queue is subject to mass exodus at rate β and mass immigration at rate when idle. A general resolvent approach is used to derive occupation probabilities and high-order moments. This powerful technique is not only considerably easier to apply than a standard direct attack on the forward p.g.f. equation, but it also implicitly yields necessary and sufficient conditions for recurrence, positive recurrence and transience.
In a system modelled by a time-discrete deterministic model, predictions of the distribution of the members over the different classes do not result automatically in an integer valued vector. In this paper, for a constant size system, we discuss how to associate with the calculated vector an integer valued vector. Furthermore we examine whether the evolution of the calculated vectors on the one hand, and the evolution of the associated integer valued vectors on the other hand, have the same properties.
The shape of a rectangular prism in (d + 1)-dimensions is defined as Y = (Y1, Y2, · ··, Yd), Yn = Ln/Ln+1 where the Ln are the prism's edge lengths, in ascending order. We investigate shape distributions that are invariant when the prism is cut into two, also rectangular, prisms, with one prism retained for measurement and the other discarded. Interesting new distributions on [0, 1]d arise.
We provide an explicit matrix analytic solution for finite quasi birth and death (QBD) processes, directly expressed in terms of process parameters. We show that this solution has the same asymptotic complexity of previously proposed non-explicit solutions and is more general than some of them. Moreover, it can be easily extended to the case of generalized QBD processes.
A general multi-type branching process where new individuals immigrate according to some point process is considered. An intrinsic submartingale is defined and a convergence result for processes counted with random characteristics is obtained. Some examples are given.
In the epidemic with removal with range r, each site z, once infected, remains so for a period of time Tz, the variables Tz being i.i.d. with mean μ. While infected, a site infects its healthy r-neighbours independently at total rate α. After infection, sites become immune. We show that the critical rate of infection αc (r), above which an epidemic starting from a single site may continue forever, converges to μ–1 as r →∞.
The asymptotic behaviour of a superadditive bisexual Galton–Watson branching process is studied. Sufficient conditions for the almost sure and L1 convergence of the suitably normed process are given. Finally, a first approach to the study of the L1 convergence for a superadditive bisexual Galton–Watson branching process under the Z log+Z condition is considered.
We investigate the ‘clumping versus local finiteness' behavior in the infinite backward tree for a class of branching particle systems in ℝd with symmetric stable migration and critical ‘genuine multitype' branching. Under mild assumptions on the branching we establish, by analysing certain ergodic properties of the individual ancestral process, a critical dimension dc such that the (measure-valued) tree-top is almost surely locally finite if and only if d > dc. This result is used to obtain L1-norm asymptotics of a corresponding class of systems of non-linear partial differential equations.