We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We classify all (abstract) homomorphisms from the group $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\sf PGL}_{r+1}(\mathbf{C})$ to the group ${\sf Bir}(M)$ of birational transformations of a complex projective variety $M$, provided that $r\geq \dim _\mathbf{C}(M)$. As a byproduct, we show that: (i) ${\sf Bir}(\mathbb{P}^n_\mathbf{C})$ is isomorphic, as an abstract group, to ${\sf Bir}(\mathbb{P}^m_\mathbf{C})$ if and only if $n=m$; and (ii) $M$ is rational if and only if ${\sf PGL}_{\dim (M)+1}(\mathbf{C})$ embeds as a subgroup of ${\sf Bir}(M)$.
We show that the modulus of the Bergman kernel $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}B(z, \zeta )$ of a general homogeneous Siegel domain of type II is ‘almost constant’ uniformly with respect to $z$ when $\zeta $ varies inside a Bergman ball. The control is expressed in terms of the Bergman distance. This result was proved by A. Korányi for symmetric Siegel domains of type II. Subsequently, R. R. Coifman and R. Rochberg used it to establish an atomic decomposition theorem and an interpolation theorem by functions in Bergman spaces $A^p$ on these domains. The atomic decomposition theorem and the interpolation theorem are extended here to the general homogeneous case using the same tools. We further extend the range of exponents $p$ via functional analysis using recent estimates.
In this paper we study the classification of holomorphic flows on Stein spaces of dimension two. We assume that the flow has periodic orbits, not necessarily with a same period. Then we prove a linearization result for the flow, under some natural conditions on the surface.
We study the boundedness properties of Rudin–Forelli-type operators associated to tubular domains over symmetric cones. As an application, we give a characterization of the topological dual space of the weighted Bergman space .
We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of G extends holomorphically to an action of the complexified group and that with respect to a compatible maximal compact subgroup U of the action on Z is Hamiltonian. There is a corresponding gradient map where is a Cartan decomposition of . We obtain a Morse-like function on X. Associated with critical points of are various sets of semistable points which we study in great detail. In particular, we have G-stable submanifolds Sβ of X which are called pre-strata. In cases where is proper, the pre-strata form a decomposition of X and in cases where X is compact they are the strata of a Morse-type stratification of X. Our results are generalizations of results of Kirwan obtained in the case where and X=Z is compact.