We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the dynamics of a generic automorphism f of a Stein manifold with the density property. Such manifolds include almost all linear algebraic groups. Even in the special case of ${\mathbb {C}}^n$, $n\geq 2$, most of our results are new. We study the Julia set, non-wandering set and chain-recurrent set of f. We show that the closure of the set of saddle periodic points of f is the largest forward invariant set on which f is chaotic. This subset of the Julia set of f is also characterized as the closure of the set of transverse homoclinic points of f, and equals the Julia set if and only if a certain closing lemma holds. Among the other results in the paper is a generalization of Buzzard’s holomorphic Kupka–Smale theorem to our setting.
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of relative invariants.
For a Lie algebra ${\mathfrak g}$ of holomorphic vector fields on a complex manifold M, any holomorphic ${\mathfrak g}$-invariant hypersurface is given in terms of a ${\mathfrak g}$-invariant divisor. This generalizes the classical notion of scalar relative ${\mathfrak g}$-invariant. Any ${\mathfrak g}$-invariant divisor gives rise to a ${\mathfrak g}$-equivariant line bundle, and a large part of this paper is therefore devoted to the investigation of the group $\mathrm {Pic}_{\mathfrak g}(M)$ of ${\mathfrak g}$-equivariant line bundles. We give a cohomological description of $\mathrm {Pic}_{\mathfrak g}(M)$ in terms of a double complex interpolating the Chevalley-Eilenberg complex for ${\mathfrak g}$ with the Čech complex of the sheaf of holomorphic functions on M.
We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a characterization of them with our general theory. Examples, including projective geometry of curves and second-order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some classical computations. At the end, we briefly discuss generalizations of this theory.
We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.
We show that a compact complex manifold X has no non-trivial nef $(1,1)$-classes if there is a non-biholomorphic bimeromorphic map $f\colon X\dashrightarrow Y$, which is an isomorphism in codimension 1 to a compact Kähler manifold Y with $h^{1,1}=1$. In particular, there exist infinitely many isomorphic classes of smooth compact Moishezon threefolds with no nef and big $(1,1)$-classes. This contradicts a recent paper (Strongly Jordan property and free actions of non-abelian free groups, Proc. Edinb. Math. Soc., 65(3) (2022), 736–746).
Let $\mathbf {D}$ be a bounded homogeneous domain in ${\mathbb {C}}^n$. In this note, we give a characterization of the Stein domains in $\mathbf {D}$ which are invariant under a maximal unipotent subgroup N of $Aut(\mathbf {D})$. We also exhibit an N-invariant potential of the Bergman metric of $\mathbf {D}$, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.
An element g in a group G is called reversible if g is conjugate to g−1 in G. An element g in G is strongly reversible if g is conjugate to g−1 by an involution in G. The group of affine transformations of $\mathbb D^n$ may be identified with the semi-direct product $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $, where $\mathbb D:=\mathbb R, \mathbb C$ or $ \mathbb H $. This paper classifies reversible and strongly reversible elements in the affine group $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $.
We investigate the geometry of codimension one foliations on smooth projective varieties defined over fields of positive characteristic with an eye toward applications to the structure of codimension one holomorphic foliations on projective manifolds.
We consider the moduli space of genus 4 curves endowed with a $g^1_3$ (which maps with degree 2 onto the moduli space of genus 4 curves). We prove that it defines a degree $\frac {1}{2}(3^{10}-1)$ cover of the nine-dimensional Deligne–Mostow ball quotient such that the natural divisors that live on that moduli space become totally geodesic (their normalizations are eight-dimensional ball quotients). This isomorphism differs from the one considered by S. Kondō, and its construction is perhaps more elementary, as it does not involve K3 surfaces and their Torelli theorem: the Deligne–Mostow ball quotient parametrizes certain cyclic covers of degree 6 of a projective line and we show how a level structure on such a cover produces a degree 3 cover of that line with the same discriminant, yielding a genus 4 curve endowed with a $g^1_3$.
We formalize the concepts of holomorphic affine and projective structures along the leaves of holomorphic foliations by curves on complex manifolds. We show that many foliations admit such structures, we provide local normal forms for them at singular points of the foliation, and we prove some index formulae in the case where the ambient manifold is compact. As a consequence of these, we establish that a regular foliation of general type on a compact algebraic manifold of even dimension does not admit a foliated projective structure. Finally, we classify foliated affine and projective structures along regular foliations on compact complex surfaces.
We study the arithmeticity of $\mathbb {C}$-Fuchsian subgroups of some nonarithmetic lattices constructed by Deraux et al. [‘New non-arithmetic complex hyperbolic lattices’, Invent. Math.203 (2016), 681–771]. Our results give an answer to a question raised by Wells [Hybrid Subgroups of Complex Hyperbolic Isometries, Doctoral thesis, Arizona State University, 2019].
Let $X$ be a connected complex manifold and let $Z$ be a compact complex subspace of $X$. Assume that ${\rm Aut}(Z)$ is strongly Jordan. In this paper, we show that the automorphism group ${\rm Aut}(X,\, Z)$ of all biholomorphisms of $X$ preserving $Z$ is strongly Jordan. A similar result has been proved by Meng et al. for a compact Kähler submanifold $Z$ of $X$ instead of a compact complex subspace $Z$ of $X$. In addition, we also show some rigidity result for free actions of large groups on complex manifolds.
Let
$(\mathbb {D}^2,\mathscr {F},\{0\})$
be a singular holomorphic foliation on the unit bidisc
$\mathbb {D}^2$
defined by the linear vector field
$$ \begin{align*} z \frac{\partial}{\partial z}+ \unicode{x3bb} w \frac{\partial}{\partial w}, \end{align*} $$
where
$\unicode{x3bb} \in \mathbb {C}^*$
. Such a foliation has a non-degenerate singularity at the origin
${0:=(0,0) \in \mathbb {C}^2}$
. Let T be a harmonic current directed by
$\mathscr {F}$
which does not give mass to any of the two separatrices
$(z=0)$
and
$(w=0)$
. Assume
$T\neq 0$
. The Lelong number of T at
$0$
describes the mass distribution on the foliated space. In 2014 Nguyên (see [16]) proved that when
$\unicode{x3bb} \notin \mathbb {R}$
, that is, when
$0$
is a hyperbolic singularity, the Lelong number at
$0$
vanishes. Suppose the trivial extension
$\tilde {T}$
across
$0$
is
$dd^c$
-closed. For the non-hyperbolic case
$\unicode{x3bb} \in \mathbb {R}^*$
, we prove that the Lelong number at
$0$
:
(1) is strictly positive if
$\unicode{x3bb}>0$
;
(2) vanishes if
$\unicode{x3bb} \in \mathbb {Q}_{<0}$
;
(3) vanishes if
$\unicode{x3bb} <0$
and T is invariant under the action of some cofinite subgroup of the monodromy group.
We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra
$\mathfrak {u}$
extends holomorphically to an action of the complexified group
$U^{\mathbb {C}}$
and that the U-action on Z is Hamiltonian. If
$G\subset U^{\mathbb {C}}$
is compatible, there exists a gradient map
$\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$
where
$\mathfrak g=\mathfrak k \oplus \mathfrak p$
is a Cartan decomposition of
$\mathfrak g$
. In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map
$\mu _{\mathfrak p}$
.
We define a Toledo number for actions of surface groups and complex hyperbolic lattices on infinite-dimensional Hermitian symmetric spaces, which allows us to define maximal representations. When the target is not of tube type, we show that there cannot be Zariski-dense maximal representations, and whenever the existence of a boundary map can be guaranteed, the representation preserves a finite-dimensional totally geodesic subspace on which the action is maximal. In the opposite direction, we construct examples of geometrically dense maximal representation in the infinite-dimensional Hermitian symmetric space of tube type and finite rank. Our approach is based on the study of boundary maps, which we are able to construct in low ranks or under some suitable Zariski density assumption, circumventing the lack of local compactness in the infinite-dimensional setting.
Let X be a normal projective variety of dimension n and G an abelian group of automorphisms such that all elements of
$G\setminus \{\operatorname {id}\}$
are of positive entropy. Dinh and Sibony showed that G is actually free abelian of rank
$\le n - 1$
. The maximal rank case has been well understood by De-Qi Zhang. We aim to characterize the pair
$(X, G)$
such that
$\operatorname {rank} G = n - 2$
.
A Vaisman manifold is a special kind of locally conformally Kähler manifold, which is closely related to a Sasaki manifold. In this paper, we show a basic structure theorem of simply connected homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, up to holomorphic isometry. For the case of unimodular Lie groups, we obtain a complete classification of simply connected Sasaki and Vaisman unimodular Lie groups, up to modification.
By assuming the endoscopic classification of automorphic representations on inner forms of unitary groups, which is currently work in progress by Kaletha, Minguez, Shin, and White, we bound the growth of cohomology in congruence towers of locally symmetric spaces associated to $U(n,1)$. In the case of lattices arising from Hermitian forms, we expect that the growth exponents we obtain are sharp in all degrees.
Let ${\mathcal{D}}$ be the irreducible Hermitian symmetric domain of type $D_{2n}^{\mathbb{H}}$. There exists a canonical Hermitian variation of real Hodge structure ${\mathcal{V}}_{\mathbb{R}}$ of Calabi–Yau type over ${\mathcal{D}}$. This short note concerns the problem of giving motivic realizations for ${\mathcal{V}}_{\mathbb{R}}$. Namely, we specify a descent of ${\mathcal{V}}_{\mathbb{R}}$ from $\mathbb{R}$ to $\mathbb{Q}$ and ask whether the $\mathbb{Q}$-descent of ${\mathcal{V}}_{\mathbb{R}}$ can be realized as sub-variation of rational Hodge structure of those coming from families of algebraic varieties. When $n=2$, we give a motivic realization for ${\mathcal{V}}_{\mathbb{R}}$. When $n\geqslant 3$, we show that the unique irreducible factor of Calabi–Yau type in $\text{Sym}^{2}{\mathcal{V}}_{\mathbb{R}}$ can be realized motivically.
Rosay and Rudin introduced the notion of ‘tameness’ for discrete subsets of $\mathbf{C}^{n}$. We generalize the notion of tameness for discrete sets to arbitrary Stein manifolds, with special emphasis on complex Lie groups.
We establish rigidity (or uniqueness) theorems for non-commutative (NC) automorphisms that are natural extensions of classical results of H. Cartan and are improvements of recent results. We apply our results to NC domains consisting of unit balls of rectangular matrices.