To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is the first of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 1 contains most of the material on orthogonal polynomials, from the classical orthogonal polynomials of Hermite, Laguerre and Jacobi to the Askey–Wilson polynomials, which are the most general basic hypergeometric orthogonal polynomials. Separate chapters cover orthogonal polynomials on the unit circle, zeros of orthogonal polynomials and matrix orthogonal polynomials, with detailed results about matrix-valued Jacobi polynomials. A chapter on moment problems provides many examples of indeterminate moment problems. A thorough bibliography rounds off what will be an essential reference.
Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded claim of necessary actual infinities, they must also weaken the mathematics they recover.
State spaces are, in the most general sense, sets of entities that contain information. Examples include states of dynamical systems, processes of observations, or possible worlds. We use domain theory to describe the structure of positive and negative information in state spaces. We present examples ranging from the space of trajectories of a dynamical system, over Dunn’s aboutness interpretation of fde, to the space of open sets of a spectral space. We show that these information structures induce so-called hype models which were recently developed by Leitgeb (2019). Conversely, we prove a representation theorem: roughly, hype models can be represented as induced by an information structure. Thus, the well-behaved logic hype is a sound and complete logic for reasoning about information in state spaces.
As application of this framework, we investigate information fusion. We motivate two kinds of fusion. We define a groundedness and a separation property that allow a hype model to be closed under the two kinds of fusion. This involves a Dedekind–MacNeille completion and a fiber-space like construction. The proof-techniques come from pointless topology and universal algebra.
In this paper, we axiomatize the deontic logic in Fusco (2015), which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the restrictions Fusco’s account must place on free-choice inferences. They are also of independent interest, as they raise difficult questions about how to “lift” a Kripke frame for a one-dimensional modal logic into two dimensions.
Zermelo’s Theorem that the axiom of choice is equivalent to the principle that every set can be well-ordered goes through in third-order logic, but in second-order logic we run into expressivity issues. In this note, we show that in a natural extension of second-order logic weaker than third-order logic, choice still implies the well-ordering principle. Moreover, this extended second-order logic with choice is conservative over ordinary second-order logic with the well-ordering principle. We also discuss a variant choice principle, due to Hilbert and Ackermann, which neither implies nor is implied by the well-ordering principle.
The prevalent interpretation of Gödel’s Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem’s dependency regarding Gödel numberings. I introduce deviant numberings, yielding provability predicates satisfying Löb’s conditions, which result in provable consistency sentences. According to the main result of this paper however, these “counterexamples” do not refute the theorem’s prevalent interpretation, since once a natural class of admissible numberings is singled out, invariance is maintained.
We consider the Lambek calculus, or noncommutative multiplicative intuitionistic linear logic, extended with iteration, or Kleene star, axiomatised by means of an $\omega $-rule, and prove that the derivability problem in this calculus is $\Pi _1^0$-hard. This solves a problem left open by Buszkowski (2007), who obtained the same complexity bound for infinitary action logic, which additionally includes additive conjunction and disjunction. As a by-product, we prove that any context-free language without the empty word can be generated by a Lambek grammar with unique type assignment, without Lambek’s nonemptiness restriction imposed (cf. Safiullin, 2007).
This paper investigates and develops generalizations of two-dimensional modal logics to any finite dimension. These logics are natural extensions of multidimensional systems known from the literature on logics for a priori knowledge. We prove a completeness theorem for propositional n-dimensional modal logics and show them to be decidable by means of a systematic tableau construction.
This paper clarifies, revises, and extends the account of the transmission of truthmakers by core proofs that was set out in chap. 9 of Tennant (2017). Brauer provided two kinds of example making clear the need for this. Unlike Brouwer’s counterexamples to excluded middle, the examples of Brauer that we are dealing with here establish the need for appeals to excluded middle when applying, to the problem of truthmaker-transmission, the already classical metalinguistic theory of model-relative evaluations.
We investigate the modal logic of stepwise removal of objects, both for its intrinsic interest as a logic of quantification without replacement, and as a pilot study to better understand the complexity jumps between dynamic epistemic logics of model transformations and logics of freely chosen graph changes that get registered in a growing memory. After introducing this logic (MLSR) and its corresponding removal modality, we analyze its expressive power and prove a bisimulation characterization theorem. We then provide a complete Hilbert-style axiomatization for the logic of stepwise removal in a hybrid language enriched with nominals and public announcement operators. Next, we show that model-checking for MLSR is PSPACE-complete, while its satisfiability problem is undecidable. Lastly, we consider an issue of fine-structure: the expressive power gained by adding the stepwise removal modality to fragments of first-order logic.
A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favor of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that seems to necessitate the addition of sets to V. We argue that, despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We present a method of interpreting extension-talk (V-logic), and show how it captures satisfaction in ‘ideal’ outer models and relates to impredicative class theories. We provide some reasons to regard the technique as philosophically virtuous, and argue that it opens new doors to philosophical and mathematical discussions for the Universist.
The aim of the paper is to argue that all—or almost all—logical rules have exceptions. In particular, it is argued that this is a moral that we should draw from the semantic paradoxes. The idea that we should respond to the paradoxes by revising logic in some way is familiar. But previous proposals advocate the replacement of classical logic with some alternative logic. That is, some alternative system of rules, where it is taken for granted that these hold without exception. The present proposal is quite different. According to this, there is no such alternative logic. Rather, classical logic retains the status of the ‘one true logic’, but this status must be reconceived so as to be compatible with (almost) all of its rules admitting of exceptions. This would seem to have significant repercussions for a range of widely held views about logic: e.g., that it is a priori, or that it is necessary. Indeed, if the arguments of the paper succeed, then such views must be given up.
In this paper, we propose a new kind of nonprioritized operator which we call two level credibility-limited revision. When revising through a two level credibility-limited revision there are two levels of credibility and one of incredibility. When revising by a sentence at the highest level of credibility, the operator behaves as a standard revision, if the sentence is at the second level of credibility, then the outcome of the revision process coincides with a standard contraction by the negation of that sentence. If the sentence is not credible, then the original belief set remains unchanged. In this article, we axiomatically characterize several classes of two level credibility-limited revision operators.
This paper contributes to a recent research program that extends arguments supporting elementary conditionalization to arguments supporting conditionalization with general, measure-theoretic conditional probabilities. I begin by suggesting an amendment to the framework that Rescorla (2018) has used to characterize regular conditional probabilities in terms of avoiding Dutch book. If we wish to model learning scenarios in which an agent gains complete membership knowledge about some subcollection of the events of interest to her, then we should focus on updating policies that are what I shall call proper. I go on to characterize regular conditional probabilities in proper learning scenarios using what van Fraassen (1999) calls The General Reflection Principle.
We investigate a recent proposal for modal hypersequent calculi. The interpretation of relational hypersequents incorporates an accessibility relation along the hypersequent. These systems give the same interpretation of hypersequents as Lellman’s linear nested sequents, but were developed independently by Restall for S5 and extended to other normal modal logics by Parisi. The resulting systems obey Došen’s principle: the modal rules are the same across different modal logics. Different modal systems only differ in the presence or absence of external structural rules. With the exception of S5, the systems are modular in the sense that different structural rules capture different properties of the accessibility relation. We provide the first direct semantical cut-free completeness proofs for K, T, and D, and show how this method fails in the case of B and S4.
We present epistemic multilateral logic, a general logical framework for reasoning involving epistemic modality. Standard bilateral systems use propositional formulae marked with signs for assertion and rejection. Epistemic multilateral logic extends standard bilateral systems with a sign for the speech act of weak assertion (Incurvati & Schlöder, 2019) and an operator for epistemic modality. We prove that epistemic multilateral logic is sound and complete with respect to the modal logic $\mathbf {S5}$ modulo an appropriate translation. The logical framework developed provides the basis for a novel, proof-theoretic approach to the study of epistemic modality. To demonstrate the fruitfulness of the approach, we show how the framework allows us to reconcile classical logic with the contradictoriness of so-called Yalcin sentences and to distinguish between various inference patterns on the basis of the epistemic properties they preserve.
We present four classical theories of counterpossibles that combine modalities and counterfactuals. Two theories are anti-vacuist and forbid vacuously true counterfactuals, two are quasi-vacuist and allow counterfactuals to be vacuously true when their antecedent is not only impossible, but also inconceivable. The theories vary on how they restrict the interaction of modalities and counterfactuals. We provide a logical cartography with precise acceptable boundaries, illustrating to what extent nonvacuism about counterpossibles can be reconciled with classical logic.