We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Brown dwarfs are failed stars with very low mass (13–75 Jupiter mass) and an effective temperature lower than 2 500 K. Their mass range is between Jupiter and red dwarfs. Thus, they play a key role in understanding the gap in the mass function between stars and planets. However, due to their faint nature, previous searches are inevitably limited to the solar neighbourhood (20 pc). To improve our knowledge of the low mass part of the initial stellar mass function and the star formation history of the Milky Way, it is crucial to find more distant brown dwarfs. Using James Webb Space Telescope (JWST) COSMOS-Web data, this study seeks to enhance our comprehension of the physical characteristics of brown dwarfs situated at a distance of kpc scale. The exceptional sensitivity of the JWST enables the detection of brown dwarfs that are up to 100 times more distant than those discovered in the earlier all-sky infrared surveys. The large area coverage of the JWST COSMOS-Web survey allows us to find more distant brown dwarfs than earlier JWST studies with smaller area coverages. To capture prominent water absorption features around 2.7 ${\unicode{x03BC}}$m, we apply two colour criteria, $\text{F115W}-\text{F277W}+1\lt\text{F277W}-\text{F444W}$ and $\text{F277W}-\text{F444W}\gt\,0.9$. We then select point sources by CLASS_STAR, FLUX_RADIUS, and SPREAD_MODEL criteria. Faint sources are visually checked to exclude possibly extended sources. We conduct SED fitting and MCMC simulations to determine their physical properties and associated uncertainties. Our search reveals 25 T-dwarf candidates and 2 Y-dwarf candidates, more than any previous JWST brown dwarf searches. They are located from 0.3 to 4 kpc away from the Earth. The spatial number density of 900–1 050 K dwarf is $(2.0\pm0.9) \times10^{-6}\text{ pc}^{-3}$, 1 050–1 200 K dwarf is $(1.2\pm0.7) \times10^{-6}\text{ pc}^{-3}$, and 1 200–1 350 K dwarf is $(4.4\pm1.3) \times10^{-6}\text{ pc}^{-3}$. The cumulative number count of our brown dwarf candidates is consistent with the prediction from a standard double exponential model. Three of our brown dwarf candidates were detected by HST, with transverse velocities $12\pm5$, $12\pm4$, and $17\pm6$ km s$^{-1}$. Along with earlier studies, the JWST has opened a new window of brown dwarf research in the Milky Way thick disk and halo.
Interactions play a significant role in the formation and evolution of galaxies in the Universe. The galaxy systems, NGC 7252 and NGC 5291 are two nearby interacting systems that are hosting Tidal Dwarf Galaxies (TDGs) and star-forming knots. The present work aims (a) To determine the attenuation-corrected star formation rate (SFR) of the interacting system NGC 7252 (b) To compare the star formation in the NGC 7252 system with that of the NGC 5291 system (c) To explore the relation between surface densities of gas and SFR in these two systems. The study utilises high-resolution FUV and NUV imaging data from the Ultraviolet Imaging Telescope (UVIT) on board AstroSat. Six star-forming regions, including the merger remnant, were identified in the NGC 7252 system. The SFR corrected for attenuation of the knots in the NGC 7252 system is determined using the continuum slope β calculated from the FUV-NUV colour. It has been observed that the attenuation-corrected SFR values of the knots in this system fall within the range of SFR values determined for the NGC 5291 knots. The TDGs in both systems adhere to the same Kennicutt-Schmidt (KS) relation as regular spiral galaxies.
Obscuration in active galactic nuclei (AGN) provides valuable insights into the nature of the material surrounding the central engine. Comptonthick AGN (CTAGN), characterised by a column density of NH ≥ 1.5 × 1024 cm−2, are heavily obscured by substantial amounts of dust and gas. While X-ray observations are primarily used to determine this column density, our understanding of obscuration properties in the sub-mm regime, particularly for CTAGN, remains limited. In this study, we analyse archival data from the Atacama Large Millimetre/sub-millimetre Array (ALMA) for both CTAGN and non-CTAGN sources, as identified by the 70-month catalogue of the all-sky hard X-ray Swift/Burst Alert Monitor survey and other X-ray surveys. Integrated intensity maps (moment 0) of CO(3–2) emission reveal a concentrated distribution of dense gas around the nucleus. Utilising a constant CO-to-H2 conversion factor, XCO = 2.2 × 1020 cm−2 (K km s−1)−1, we find that the derived molecular hydrogen column densities, NH2, are generally lower than the total hydrogen column densities, NH, obtained from X-ray observations. However, the NH2 values derived in this work are slightly higher than those reported in previous studies due to the adoption of a higher CO-to-H2 conversion factor. This discrepancy between NH and NH2 is consistent with prior findings that X-ray-derived column densities are typically higher, except in the case of non-CTAGN, where NH2 can exceed NH. Statistical analysis using Kendall and Spearman tests reveals a positive monotonic relationship between NH and NH2, although the correlation is not statistically significant. This suggests a complex interplay of factors influencing these properties. The optically thick nature of CO in dense regions may contribute to the observed discrepancies. Our results highlight the importance of adopting an accurate CO-to-H2 conversion factor to derive reliable column densities, which could serve as an alternative method for identifying CTAGN. Further investigations with more comprehensive data sets and refined methodologies are needed to better understand the relationship between sub-millimetre and X-ray properties in AGNs.
The effects of diffraction, reflection, and mutual coupling on the spectral smoothness of radio telescopes become increasingly important at low frequencies, where the observing wavelength may be significant compared with the antenna or array dimensions. These effects are important for both traditional parabolic antennas, which are prone to the ‘standing wave’ phenomenon caused by interference between direct and scattered wavefronts, and aperture arrays, such as the SKA-Low, MWA, HERA, and LOFAR which have more complicated scattering geometries and added dependence on pointing direction (scan angle). Electromagnetic modelling of these effects is computationally intensive and often only possible at coarse frequency resolution. Therefore, using the example of SKA-Low station configurations, we investigate the feasibility of parameterising scattering matrices and separating antenna and array contributions to telescope chromaticity. This allows deeper insights into the effect on spectral smoothness and frequency-dependent beam patterns of differing antenna configurations. Even for the complicated SKA-Low element design, band-limited delay-space techniques appear to produce similar results to brute-force electromagnetic models and allow for faster computation of station beam hypercubes (position, frequency, and polarisation-dependent point spread functions) at arbitrary spectral resolution. As such techniques could facilitate improvements in the design of low-frequency spectral-line surveys, we conduct a simulated Cosmic Dawn experiment using different observing techniques and station configurations.
Polar ring galaxies (PRGs) are a unique class of galaxies characterised by a ring of gas and stars orbiting nearly orthogonal to the main body. This study delves into the evolutionary trajectory of PRGs using the exemplary trio of NGC 3718, NGC 2685, and NGC 4262. We investigate the distinct features of PRGs by analysing their ring and host components to reveal their unique characteristics through spectral energy distribution (SED) fitting. Using CIGALE, we performed SED fitting to independently analyse the ring and host spatially resolved regions, marking the first decomposed SED analysis for PRGs, which examines stellar populations using high-resolution observations from AstroSat UVIT at a resolved scale. The UV-optical surface profiles provide an initial idea that distinct patterns in the galaxies, with differences in FUV and NUV, suggest three distinct stages of ring evolution in the selected galaxies. The study of resolved-scale stellar regions reveals that the ring regions are generally younger than their host galaxies, with the age disparity progressively decreasing along the evolutionary sequence from NGC 3718 to NGC 4262. Star formation rates (SFR) also exhibit a consistent pattern, with higher SFR in the ring of NGC 3718 compared to the others, and a progressive decrease through NGC 2685 and NGC 4262. Finally, the representation of the galaxies in the HI gas fraction versus the NUV–$\text r$ plane supports the idea that they are in three different evolutionary stages of PRG evolution, with NGC 3718 in the initial stage, NGC 2685 in the intermediate stage, and NGC 4262 representing the final stage. This study concludes that PRGs undergo various evolutionary stages, as evidenced by the observed features in the ring and host components. NGC 3718, NGC 2685, and NGC 4262 represent different stages of this evolution, highlighting the dynamic nature of PRGs and emphasising the importance of studying their evolutionary processes to gain insights into galactic formation and evolution.
AstroSat observed transient neutron star low-mass X-ray binary XTE J1701-462 for a total duration of $\sim$ 135 ks during its 2022 outburst. We report the results of a detailed spectral and timing analysis carried out using this data. The source traced a complete ‘Z’ shaped structure in the hardness intensity diagram (HID). The source exhibited an extended horizontal branch and a short-dipping flaring branch in the HID. The spectra of the source were fitted with different approaches. We find that most suitable spectral model comprises emission from a standard multi-color accretion disk (diskbb in XSPEC) and Comptonised radiation from a hot central corona, described by Comptb model of XSPEC. The observed disk component is cool, having a temperature in the range of $\sim 0.28-0.42$ keV and truncated far ($\sim$ 250 - 1600 km) from the compact object. The Compton corona has an optical depth in the range of $\sim 3.4- 5.1 $ and a temperature in the range of $3.3-4.5$ keV. The disk and corona flux as well as truncation radius vary significantly along the HID. The temperature $kT_{in}$ depends on both luminosity and inner disk radius and hence shows marginal variation as compared to the truncation radius. We discuss possible scenarios to explain the relationship between the spectral evolution and motion of the source along the HID. The timing analysis revealed horizontal branch oscillations (HBOs) in the frequency range $\sim 34-40$ Hz. The frequency and rms strength of HBO vary systematically as the source moves along the horizontal branch (HB). The observed correlation of the HBO properties with the position on the HB is similar to that previously reported in this source using RXTE data during the 2006 outburst of the source. The source also showed normal branch oscillations (NBOs) with frequency $\sim$ 6.7 Hz in the middle and the lower normal branch. The energy-dependent study of the HBO properties suggests that the HBO is stronger in the higher energy band. We also observed very-low frequency noise and band-limited noise (BLN) components in the power density spectra. The break frequency of BLN component was found to be tightly correlated with the HBO frequency. We discuss possible models to explain the origin and nature of the observed features in the PDS.
The cosmic 21 cm signal serves as a crucial probe for studying the evolutionary history of the Universe. However, detecting the 21 cm signal poses significant challenges due to its extremely faint nature. To mitigate the interference from the Earth’s radio frequency interference (RFI), the ground and the ionospheric effects, the Discovering the Sky at the Longest Wavelength (DSL) project will deploy a constellation of satellites in lunar orbit, with its high-frequency daughter satellite tasked with detecting the global 21 cm signal from cosmic dawn and reionization era (CD/EoR). We intend to employ the vari-zeroth-order polynomial (VZOP) for foreground fitting and subtracting. We have studied the effect of thermal noise, thermal radiation from the Moon, the lunar reflection, anisotropic frequency-dependent beam, inaccurate antenna beam pattern, and RFI contamination. We discovered that the RFI contamination can significantly affect the fitting process and thus prevent us from detecting the signal. Therefore, experimenting on the far side of the moon is crucial. We also discovered that using VZOP together with DSL, after 1080 orbits around the Moon, which takes about 103 days, we can successfully detect the CD/EoR 21 cm signal.
The stellar age and mass of galaxies have been suggested as the primary determinants for the dynamical state of galaxies, with environment seemingly playing no or only a very minor role. We use a sample of 77 galaxies at intermediate redshift ($z\sim0.3$) in the Middle-Ages Galaxies Properties with Integral field spectroscopy (MAGPI) Survey to study the subtle impact of environment on galaxy dynamics. We use a combination of statistical techniques (simple and partial correlations and principal component analysis) to isolate the contribution of environment on galaxy dynamics, while explicitly accounting for known factors such as stellar age, star formation histories, and stellar masses. We consider these dynamical parameters: high-order kinematics of the line-of-sight velocity distribution (parametrised by the Gauss-Hermite coefficients $h_3$ and $h_4$), kinematic asymmetries $V_{\textrm{asym}}$ derived using kinemetry, and the observational spin parameter proxy $\lambda_{R_e}$. Of these, the mean $h_4$ is the only parameter found to have a significant correlation with environment as parametrised by group dynamical mass. This correlation exists even after accounting for age and stellar mass trends. We also find that satellite and central galaxies exhibit distinct dynamical behaviours, suggesting they are dynamically distinct classes. Finally, we confirm that variations in the spin parameter $\lambda_{R_e}$ are most strongly (anti-)correlated with age as seen in local studies, and show that this dependence is well-established by $z\sim0.3$.
We present a chemo-dynamical study conducted with 2dF$+$AAOmega of $\sim 6\,000$Gaia DR3 non-variable candidate metal-poor stars that lie in the direction of the Galactic plane. Our spectral analysis reveals 15 new extremely metal-poor (EMP) stars, with the lowest metallicity at $\left[\text{Fe/H}\right] = -4.0 \pm 0.2$ dex. Two of the EMP stars are also carbon enhanced, with the largest enhancement of $\left[\text{C/Fe}\right] = 1.3 \pm 0.1$ occurring in a dwarf. Using our $\left[\text{C/Fe}\right]$ results, we demonstrate that the number of carbon-depleted stars decreases with lower metallicities, and the fraction of carbon-enhanced stars increases, in agreement with previous studies. Our dynamical analysis reveals that the fraction of prograde and retrograde disk stars, defined as $z_{\mathrm{max}} \lt 3$ kpc, with $J_{\phi}/J_{\mathrm{tot}} \gt 0.75$ and $J_{\phi}/J_{\mathrm{tot}} \lt -0.75$, respectively, changes as metallicities decrease. Disk stars on retrograde orbits make up $\sim 10$% of all the stars in our sample with metallicities below $-2.1$ dex. Interestingly, the portion of retrograde disk stars compared with the number of kinematically classified halo stars is approximately constant at $4.6$% for all metallicities below $-1.5$ dex. We also see that $J_{\phi}$ increases from $380 \pm 50$ to $1320 \pm 90$ km s$^{-1}$ kpc across metallicity range $-1.5$ to $-1.1$, consistent with the spin-up of the Galactic disk. Over the metallicity range $-3.0 \lt \left[\text{Fe/H}\right] \lt -2.0$, the slopes of the metallicity distribution functions for the prograde and retrograde disk stars are similar and comparable to that for the halo population. However, detailed chemical analyses based on high-resolution spectra are needed to distinguish the accreted versus in situ contributions. Finally, we show that our spectroscopic parameters reveal serious systematics in the metallicities published in recent studies that apply various machine learning techniques to Gaia XP spectra.
Current and future surveys rely on machine learning classification to obtain large and complete samples of transients. Many of these algorithms are restricted by training samples that contain a limited number of spectroscopically confirmed events. Here, we present the first real-time application of Active Learning to optimise spectroscopic follow-up with the goal of improving training sets of early type Ia supernovae (SNe Ia) classifiers. Using a photometric classifier for early SN Ia, we apply an Active Learning strategy for follow-up optimisation using the real-time Fink broker processing of the ZTF public stream. We perform follow-up observations at the ANU 2.3m telescope in Australia and obtain 92 spectroscopic classified events that are incorporated in our training set. We show that our follow-up strategy yields a training set that, with 25% less spectra, improves classification metrics when compared to publicly reported spectra. Our strategy selects in average fainter events and, not only supernovae types, but also microlensing events and flaring stars which are usually not incorporated on training sets. Our results confirm the effectiveness of active learning strategies to construct optimal training samples for astronomical classifiers. With the Rubin Observatory LSST soon online, we propose improvements to obtain earlier candidates and optimise follow-up. This work paves the way to the deployment of real-time AL follow-up strategies in the era of large surveys.
This work presents visual morphological and dynamical classifications for 637 spatially resolved galaxies, most of which are at intermediate redshift ($z\sim0.3$), in the Middle-Ages Galaxy Properties with Integral field spectroscopy (MAGPI) Survey. For each galaxy, we obtain a minimum of 11 independent visual classifications by knowledgeable classifiers. We use an extension of the standard Dawid-Skene bayesian model introducing classifier-specific confidence parameters and galaxy-specific difficulty parameters to quantify classifier confidence and infer reliable statistical confidence estimates. Selecting sub-samples of 86 bright ($r\lt20$ mag) high-confidence ($\gt0.98$) morphological classifications at redshifts ($0.2 \le z \le0.4$), we confirm the full range of morphological types is represented in MAGPI as intended in the survey design. Similarly, with a sub-sample of 82 bright high-confidence stellar kinematic classifications, we find that the rotating and non-rotating galaxies seen at low redshift are already in place at intermediate redshifts. We do not find evidence that the kinematic morphology–density relation seen at $z\sim0$ is established at $z\sim0.3$. We suggest that galaxies without obvious stellar rotation are dynamically pre-processed sometime before $z\sim0.3$ within lower mass groups before joining denser environments.
Galaxy cluster X-ray cavities are inflated by relativistic jets that are ejected into the intracluster medium by active galactic nuclei (AGN). AGN jets prevent predicted cooling flow establishment at the cluster centre, and while this process is not well understood in existing studies, simulations have shown that the heating mechanism will depend on the type of gas that fills the cavities. Thermal and non-thermal distributions of electrons will produce different cavity Sunyaev Zel’dovich (SZ) effect signals, quantified by the ‘suppression factor’ f. This paper explores potential enhancements to prior constraints on the cavity gas type by simulating suppression factor observations with the Square Kilometre Array (SKA). Cluster cavities across different redshifts are observed to predict the optimum way of measuring f in future observations. We find that the SKA can constrain the suppression factor in the cavities of cluster MS 0735.6+7421 (MS0735) in as little as 4 h, with a smallest observable value of $f \approx 0.42$. Additionally, while the SKA may distinguish between possible thermal or non-thermal suppression factor values within the cavities of MS0735 if it observes for more than 8 h, determining the gas type of other clusters will likely require observations at multiple frequencies. The effect of cavity line of sight (LOS) position is also studied, and degeneracies between LOS position and the measured value of f are found. Finally, we find that for small cavities (radius < 80 kpc) at high redshift ($z \approx 1.5$), the proposed high frequencies of the SKA (23.75–37.5 GHz) will be optimal, and that including MeerKAT antennas will improve all observations of this type.
Over a hundred gravitational-wave signals have now been detected from the mergers of black holes and neutron stars, but other sources of gravitational waves have not yet been discovered. Some of the most violent explosive events in the Universe are predicted to emit bursts of gravitational waves and may result in the next big multi-messenger discovery. Gravitational-wave burst signals often have an unknown waveform shape and unknown gravitational-wave energy, due to unknown or very complicated progenitor astrophysics. Potential sources of gravitational-wave bursts include core-collapse supernovae, cosmic strings, fast radio bursts, eccentric binary systems, and gravitational-wave memory. In this review, we discuss the astrophysical properties of the main predicted sources of gravitational-wave bursts and the known features of their gravitational-wave emission. We summarise their future detection prospects and discuss the challenges of searching for gravitational-wave burst signals and interpreting the astrophysics of the source.
We propose that certain white dwarf (WD) planets, such as WD 1856+534 b, may form out of material from a stellar companion that tidally disrupts from common envelope evolution with the WD progenitor star. The disrupted companion shreds into an accretion disc, out of which a gas giant protoplanet forms due to gravitational instability. To explore this scenario, we make use of detailed stellar evolution models consistent with WD 1856+534. The minimum mass companion that produces a gravitationally unstable disc after tidal disruption is $\sim$$0.15\,\mathrm{M_\odot}$. In this scenario, WD 1856+534 b might have formed at or close to its present separation, in contrast to other proposed scenarios where it would have migrated in from a much larger separation. Planet formation from tidal disruption is a new channel for producing second-generation planets around WDs.
Detection of the weak cosmological signal from high-redshift hydrogen demands careful data analysis and an understanding of the full instrument signal chain. Here, we use the WODEN simulation pipeline to produce realistic data from the Murchison Widefield Array (MWA) Epoch of Reionisation experiment and test the effects of different instrumental systematics through the AusEoRPipe analysis pipeline. The simulations include a realistic full sky model, direction-independent calibration, and both random and systematic instrumental effects. Results are compared to matched real observations. We find that, (i) with a sky-based calibration and power spectrum approach we have need to subtract more than 90% of all unresolved point source flux (10 mJy apparent) to recover 21-cm signal in the absence of instrumental effects; (ii) when including diffuse emission in simulations, some k-modes cannot be accessed, leading to a need for some diffuse emission removal; (iii) the single greatest cause of leakage is an incomplete sky model; and (iv) other sources of errors, such as cable reflections, flagged channels, and gain errors, impart comparable systematic power to one another and less power than the incomplete sky model.
Radio-frequency interference (RFI) presents a significant obstacle to current radio interferometry experiments aimed at the Epoch of Reionization. RFI contamination is often several orders of magnitude brighter than the astrophysical signals of interest, necessitating highly precise identification and flagging. Although existing RFI flagging tools have achieved some success, the pervasive nature of this contamination leads to the rejection of excessive data volumes. In this work, we present a way to estimate an RFI emitter’s altitude using near-field corrections. Being able to obtain the precise location of such an emitter could shift the strategy from merely flagging to subtracting or peeling the RFI, allowing us to preserve a higher fraction of usable data. We conduct a preliminary study using a two-minute observation from the Murchison-Widefield Array (MWA) in which an unknown object briefly crosses the field of view, reflecting RFI signals into the array. By applying near-field corrections that bring the object into focus, we are able to estimate its approximate altitude and speed to be $11.7$ km and 792 km/h, respectively. This allows us to confidently conclude that the object in question is in fact an airplane. We further validate our technique through the analysis of two additional RFI-containing MWA observations, where we are consistently able to identify airplanes as the source of the interference.
We present a new radio detection from the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe (EMU) survey associated with the Reflection Nebula (RN) VdB-80. The radio detection is determined to be a previously unidentified Hii region, now named Lagotis. The RN is located towards Monoceros, centred in the molecular cloud feature known as the ‘Crossbones’. The 944 MHz EMU image shows a roughly semicircular Hii region with an integrated flux density of 30.2$\pm$0.3 mJy. The Hii region is also seen at 1.4 GHz by NRAO VLA Sky Survey (NVSS), yielding an estimated spectral index of 0.65$\pm$0.51, consistent with thermal radio emission. Gaia Data Release 3 (DR3) and Two Micron All Sky Survey (2MASS) data give a distance to the stars associated with the Hii region of $\sim$960 pc. This implies a size of 0.76$\times$0.68($\pm$0.09) pc for the Hii region. We derive an Hii region electron density of the bright radio feature to be 26 cm$^{-3}$, requiring a Lyman-alpha photon flux of $10^{45.6}$ s$^{-1}$, which is consistent with the expected Lyman flux of HD 46060, the B2 ii type star which is the likely ionising star of the region. The derived distance to this region implies that the Crossbones feature is a superposition of two filamentary clouds, with Lagotis embedded in the far cloud.
The 2175Å bump is a prominent absorption feature at ultraviolet (UV) wavelengths in dust extinction and attenuation curves. Understanding the relative strength of this feature is important for making accurate dust corrections at both low- and high-redshift. This feature is postulated to arise from polycyclic aromatic hydrocarbon (PAH) dust grains; however, the carrier has not been definitively established. We present results on the correlation between the 2175Å feature and PAH abundances in a spatially-resolved manner for 15 local galaxies in the PHANGS-JWST survey that have NUV and mid-IR imaging data from Swift/UVOT and JWST/MIRI, respectively. We find a moderate positive correlation between the 2175Å feature strength and PAH abundance (Spearman’s coefficient, $0.3 \lesssim \rho \lesssim 0.5$), albeit with large intrinsic scatter. However, most of this trend can be attributed to a stronger negative correlation of both quantities with SFR surface density and specific-SFR (proxies of ionising radiation; $\rho\sim-0.6$). The latter trends are consistent with previous findings that both the 2175Å carrier and PAHs are small grains that are easily destroyed by UV photons, although the proxy for PAH abundance (based on photometry) could also be influenced by dust heating. When controlling for SFR surface density, we find weaker correlations between the 2175Å feature and PAH abundances ($\rho \lesssim 0.3$), disfavouring a direct link. However, analyses based on spectroscopic (instead of photometric) measurements of the 2175Å feature and PAH features are required to verify our findings. No significant trends with gas-phase metallicity or galactocentric radii are found for the 2175Å feature and PAHs; however, the metallicity range of our sample is limited ($8.40 \lt 12+\log[\mathrm{O/H}] \lt 8.65$). We provide prescriptions for the strength of the 2175Å feature and PAHs in local massive (metal-rich) galaxies with SFR surface density and specific-SFR; however, the former should be used with caution due to the fact that bump strengths measured from Swift/UVOT are expected to be underestimated.
The data volumes generated by theWidefield ASKAP L-band Legacy All-sky Blind surveY atomic hydrogen (Hi) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) necessitate greater automation and reliable automation in the task of source finding and cataloguing. To this end, we introduce and explore a novel deep learning framework for detecting low signal-to-noise ratio (SNR) Hi sources in an automated fashion. Specifically, our proposed method provides an automated process for separating true Hi detections from false positives when used in combination with the source finding application output candidate catalogues. Leveraging the spatial and depth capabilities of 3D convolutional neural networks, our method is specifically designed to recognize patterns and features in three-dimensional space, making it uniquely suited for rejecting false-positive sources in low SNR scenarios generated by conventional linear methods. As a result, our approach is significantly more accurate in source detection and results in considerably fewer false detections compared to previous linear statistics-based source finding algorithms. Performance tests using mock galaxies injected into real ASKAP data cubes reveal our method’s capability to achieve near-100% completeness and reliability at a relatively low integrated SNR $\sim3-5$. An at-scale version of this tool will greatly maximise the science output from the upcoming widefield Hi surveys.
We carry out timing and spectral studies of the Be/X-ray binary pulsar GX 304-1 using NuStar and XMM-Newton observations. We construct the long-term spin period evolution of the pulsar which changes from a long-term spin-up ($\sim1.3 \times 10^{-13}$ Hz s$^{-1}$) to a long-term spin-down ($\sim-3.4 \times 10^{-14}$ Hz s$^{-1}$) trend during a low luminosity state ($\sim10^{34-35}$ erg s$^{-1}$). A prolonged low luminosity regime ($L_X \sim 10^{34-35}$ erg s$^{-1}$) was detected during 2005–2010 and spanning nearly five years since 2018 December. The XMM-Newton and NuStar spectra can be described with a power law plus blackbody model having an estimated luminosity of $\sim2.5 \times 10^{33}$ and $\sim3.6 \times 10^{33}$ erg s$^{-1}$, respectively. The inferred radius of the blackbody emission is about 100–110 m which suggests a polar-cap origin of this component. From long-term ultraviolet observations of the companion star, an increase in the ultraviolet signatures is detected preceding the X-ray outbursts. The spectral energy distribution of the companion star is constructed which provides a clue of possible UV excess when X-ray outbursts were detected from the neutron star compared to the quiescent phase. We explore plausible mechanisms to explain the long-term spin-down and extended low luminosity manifestation in this pulsar. We find that sustained accretion from a cold disc may explain the prolonged low luminosity state of the pulsar since December 2018 but the pulsar was undergoing normal accretion during the low luminosity period spanning 2005–2010.