To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ability to wirelessly stream data from sensors on heavy mobile equipment provides opportunities to proactively assess asset condition. However, data analysis methods are challenging to apply due to the size and structure of the data, which contain inconsistent and asynchronous entries, and large periods of missing data. Current methods usually require expertise from site engineers to inform variable selection. In this work, we develop a data preparation method to clean and arrange this streaming data for analysis, including a data-driven variable selection. Data are drawn from a mining industry case study, with sensor data from a primary production excavator over a period of 9 months. Variables include 58 numerical sensors and 40 binary indicators captured in 45-million rows of data describing the conditions and status of different subsystems of the machine. A total of 57% of time stamps contain missing values for at least one sensor. The response variable is drawn from fault codes selected by the operator and stored in the fleet management system. Application to the hydraulic system, for 21 failure events identified by the operator, shows that the data-driven selection contains variables consistent with subject matter expert expectations, as well as some sensors on other systems on the excavator that are less easy to explain from an engineering perspective. Our contribution is to demonstrate a compressed data representation using open-high-low-close and variable selection to visualize data and support identification of potential indicators of failure events from multivariate streamed data.
In 2015, Botswana introduced the quadrivalent human papillomavirus (HPV) vaccine as a two-dose schedule in girls aged 9–13 years. We sought to establish a baseline HPV prevalence in unvaccinated young adults in Botswana. HIV-uninfected men and women aged 18–22 years were recruited from the University of Botswana in Gaborone during October 2019–February 2021. Demographic and behavioural characteristics were self-reported during structured interviews. Self-collected vaginal and penile swabs were tested for 28 HPV types using Seegene Anyplex II HPV28. We compared any HPV type, quadrivalent vaccine (HPV 6, 11, 16, 18)-type and non-quadrivalent vaccine-type prevalence in men and women and evaluated the risk factors for prevalence of any HPV type. A total of 493 men and 500 women were included in the analysis. Compared to men, women had higher prevalence of any HPV type (63.0% versus 31.4%, P < 0.001), vaccine-type HPV (21% versus 9.7%, P < 0.001) and non-vaccine-type HPV (60.4% versus 28.4%, P < 0.001). Higher prevalence of any HPV type in men and women was associated with having ≥2 sex partners in the past 12 months; always using condoms in the past 3 months was associated with a lower HPV prevalence. These data provide baseline information for future evaluation of the population impact of the HPV vaccination programme, including potential herd effects in men.
We survey the literature on spectral regression estimation. We present a cohesive framework designed to model dependence on frequency in the response of economic time series to changes in the explanatory variables. Our emphasis is on the statistical structure and on the economic interpretation of time-domain specifications needed to obtain horizon effects over frequencies, over scales, or upon aggregation. To this end, we articulate our discussion around the role played by lead-lag effects in the explanatory variables as drivers of differential information across horizons. We provide perspectives for future work throughout.
We combined smartphone mobility data with census track-based reports of positive case counts to study a coronavirus disease 2019 (COVID-19) outbreak at the University of Wisconsin–Madison campus, where nearly 3000 students had become infected by the end of September 2020. We identified a cluster of twenty bars located at the epicentre of the outbreak, in close proximity to campus residence halls. Smartphones originating from the two hardest-hit residence halls (Sellery-Witte), where about one in five students were infected, were 2.95 times more likely to visit the 20-bar cluster than smartphones originating in two more distant, less affected residence halls (Ogg-Smith). By contrast, smartphones from Sellery-Witte were only 1.55 times more likely than those from Ogg-Smith to visit a group of 68 restaurants in the same area [rate ratio 1.91, 95% confidence interval (CI) 1.29–2.85, P < 0.001]. We also determined the per-capita rates of visitation to the 20-bar cluster and to the 68-restaurant comparison group by smartphones originating in each of 21 census tracts in the university area. In a multivariate instrumental variables regression, the visitation rate to the bar cluster was a significant determinant of the per-capita incidence of positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests in each census tract (elasticity 0.88, 95% CI 0.08–1.68, P = 0.032), while the restaurant visitation rate showed no such relationship. The potential super-spreader effects of clusters or networks of places, rather than individual sites, require further attention.
The tendency of insurance providers to refrain from offering long-term guarantees on investment or mortality risk has shifted attention to mutual risk pooling schemes like (modern) tontines, pooled annuities or group self annuitization schemes. While the literature has focused on mortality risk pooling schemes, this paper builds on the advantage of pooling mortality and morbidity risks, and their inherent natural hedge. We introduce a modern “life-care tontine”, which in addition to retirement income targets the needs of long-term care (LTC) coverage for an ageing population. In contrast to a classical life-care annuity, both mortality and LTC risks are shared within the policyholder pool by mortality and morbidity credits, respectively. Technically, we rely on a backward iteration to deduce the smoothed cashflows pattern and the separation of cash-flows in a fixed withdrawal and a surplus from the two types of risks. We illustrate our results using real life data, demonstrating the adequacy of the proposed tontine scheme.
The purpose of this study was to estimate simple measures of the burden of non-invasive pneumococcal pneumonia (PnPn) hospitalisations in those aged 50 years and older (50+) in Norway. We conducted a retrospective register-based study and used discharge codes from the Norwegian Patient Register (NPR). We identified episodes of non-invasive PnPn in 2015 to 2016 and predicted its incidence from 2015 to 2019 based on the trend found in notified invasive pneumococcal disease cases. Overall, we identified 45–46 hospital episodes per 100 000 population of non-invasive PnPn in 2015 and 2016, each episode taking 6–8 days, and with increasing incidence with higher age. Among all identified PnPn episodes, 3 out of 4 were classified as non-invasive. We predicted that the monthly number of non-invasive PnPn episodes ranges from 39 [95% confidence interval (CI) 24–55] in August to 97 (95% CI 74–134) in December. No annual trend was identified. This study indicates that the burden of non-invasive PnPn hospitalisation has a substantial impact on the health and health care use of the 50+ population in Norway, despite the childhood immunisation programme. Many hospitalisations may be prevented through vaccination.
Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and inference and parameter estimation via the usual Markov chain Monte Carlo algorithms. To address this problem, we propose a new exponential family of models for random graphs that build on the standard ERGM framework. Specifically, we solve the problem of computational intractability and “degenerate” model behavior by an interpretable support restriction. We introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is commonly low in real-world networks. The new model family is supported on the sample space of graphs with bounded degeneracy and is called degeneracy-restricted ERGMs, or DERGMs for short. Since DERGMs generalize ERGMs—the latter is obtained from the former by setting the degeneracy parameter to be maximal—they inherit good theoretical properties, while at the same time place their mass more uniformly over realistic graphs. The support restriction allows the use of new (and fast) Monte Carlo methods for inference, thus making the models scalable and computationally tractable. We study various theoretical properties of DERGMs and illustrate how the support restriction improves the model behavior. We also present a fast Monte Carlo algorithm for parameter estimation that avoids many issues faced by Markov Chain Monte Carlo algorithms used for inference in ERGMs.
This paper studies a generalization of the Gerber-Shiu expected discounted penalty function [Gerber and Shiu (1998). On the time value of ruin. North American Actuarial Journal 2(1): 48–72] in the context of the perturbed compound Poisson insurance risk model, where the moments of the total discounted claims and the discounted small fluctuations (arising from the Brownian motion) until ruin are also included. In particular, the latter quantity is represented by a stochastic integral and has never been analyzed in the literature to the best of our knowledge. Recursive integro-differential equations satisfied by our generalized Gerber-Shiu function are derived, and these are transformed to defective renewal equations where the components are identified. Explicit solutions are given when the individual claim amounts are distributed as a combination of exponentials. Numerical illustrations are provided, including the computation of the covariance between discounted claims and discounted perturbation until ruin.