Let   $K/\mathbb{Q}$  be Galois and let
 $K/\mathbb{Q}$  be Galois and let   $\eta \,\in \,{{K}^{\times }}$  be such that
 $\eta \,\in \,{{K}^{\times }}$  be such that   $\text{Re}{{\text{g}}_{\infty }}\left( \eta \right)\,\ne \,0$ . We define the local
 $\text{Re}{{\text{g}}_{\infty }}\left( \eta \right)\,\ne \,0$ . We define the local   $\theta $ -regulator
 $\theta $ -regulator   $\Delta _{p}^{\theta }\left( \eta \right)\,\in \,{{\mathbb{F}}_{p}}$  for the
 $\Delta _{p}^{\theta }\left( \eta \right)\,\in \,{{\mathbb{F}}_{p}}$  for the   ${{\mathbb{Q}}_{p}}$ -irreducible characters
 ${{\mathbb{Q}}_{p}}$ -irreducible characters   $\theta $  of
 $\theta $  of   $G=\,\text{Gal}\left( K/\mathbb{Q} \right)$ . Let
 $G=\,\text{Gal}\left( K/\mathbb{Q} \right)$ . Let   ${{V}_{\theta }}$  be the
 ${{V}_{\theta }}$  be the   $\theta $ -irreducible representation. A linear representation
 $\theta $ -irreducible representation. A linear representation   ${{\mathfrak{L}}^{\theta }}\,\simeq \,\delta \,{{V}_{\theta }}$  is associated with
 ${{\mathfrak{L}}^{\theta }}\,\simeq \,\delta \,{{V}_{\theta }}$  is associated with   $\Delta _{p}^{\theta }\left( \eta \right)$  whose nullity is equivalent to
 $\Delta _{p}^{\theta }\left( \eta \right)$  whose nullity is equivalent to   $\delta \,\ge \,1$ . Each
 $\delta \,\ge \,1$ . Each   $\Delta _{p}^{\theta }\left( \eta \right)$  yields
 $\Delta _{p}^{\theta }\left( \eta \right)$  yields   $\text{R}eg_{p}^{\theta }\left( \eta \right)$  modulo
 $\text{R}eg_{p}^{\theta }\left( \eta \right)$  modulo   $p$  in the factorization
 $p$  in the factorization   ${{\Pi }_{\theta }}{{\left( \text{Reg}_{p}^{\theta }\left( \eta \right) \right)}^{\phi \left( 1 \right)}}$  of
 ${{\Pi }_{\theta }}{{\left( \text{Reg}_{p}^{\theta }\left( \eta \right) \right)}^{\phi \left( 1 \right)}}$  of   $\text{Reg}_{p}^{G}\,\left( \eta \right)\,:=\frac{\text{Re}{{\text{g}}_{p}}\left( \eta \right)}{_{p}[K\,:\,\mathbb{Q}]}$  (normalized
 $\text{Reg}_{p}^{G}\,\left( \eta \right)\,:=\frac{\text{Re}{{\text{g}}_{p}}\left( \eta \right)}{_{p}[K\,:\,\mathbb{Q}]}$  (normalized   $p$ -adic regulator). From Prob
 $p$ -adic regulator). From Prob   $\left( \Delta _{p}^{\theta }\left( \eta\right)=0\,\text{and}\,{{\mathfrak{L}}^{\theta }}\simeq \delta {{V}_{\theta }} \right)\,\le {{p}^{-f{{\delta }^{2}}}}$  (
 $\left( \Delta _{p}^{\theta }\left( \eta\right)=0\,\text{and}\,{{\mathfrak{L}}^{\theta }}\simeq \delta {{V}_{\theta }} \right)\,\le {{p}^{-f{{\delta }^{2}}}}$  (  $f\,\ge \,1$  is a residue degree) and the Borel-Cantelli heuristic, we conjecture that for
 $f\,\ge \,1$  is a residue degree) and the Borel-Cantelli heuristic, we conjecture that for   $p$  large enough,
 $p$  large enough,   $\text{Reg}_{p}^{G}\left( \eta \right)$  is a
 $\text{Reg}_{p}^{G}\left( \eta \right)$  is a   $p$ -adic unit or
 $p$ -adic unit or   ${{p}^{\phi \left( 1 \right)}}\,||\,\text{Reg}_{p}^{G}\left( \eta\right)$  (a single
 ${{p}^{\phi \left( 1 \right)}}\,||\,\text{Reg}_{p}^{G}\left( \eta\right)$  (a single   $\theta $  with
 $\theta $  with   $f\,=\,\delta \,=\,1$ ); this obstruction may be led assuming the existence of a binomial probability law confirmed through numerical studies (groups
 $f\,=\,\delta \,=\,1$ ); this obstruction may be led assuming the existence of a binomial probability law confirmed through numerical studies (groups   ${{C}_{3,}}\,{{C}_{5}},\,{{D}_{6}}$ ) is conjecture would imply that for all
 ${{C}_{3,}}\,{{C}_{5}},\,{{D}_{6}}$ ) is conjecture would imply that for all   $p$  large enough, Fermat quotients, normalized
 $p$  large enough, Fermat quotients, normalized   $p$ -adic regulators are
 $p$ -adic regulators are   $p$ -adic units and that number fields are
 $p$ -adic units and that number fields are   $p$ -rational.We recall some deep cohomological results that may strengthen such conjectures.
 $p$ -rational.We recall some deep cohomological results that may strengthen such conjectures.