We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For the development of intelligent technical systems, Systems Engineering and Solution Patterns are the guarantee for success. In order to avoid cost-intensive iterations, the documentation and reuse of solution knowledge is addressed during the systems design. Using an interdisciplinary specification technique, a uniform structuring of Solution Patterns as well as the composition in a multidimensional knowledge space takes place. This is the basis of an associated systematics for a solution pattern-based system design of mechatronic systems, which is validated by two cooperating DeltaRobots.
The paper presents the application of non-specialized lexical database and semantic metrics on transcripts of co-design protocols. Three different and previously analyzed design protocols of co-creative sessions in the field of packaging design, carried out with different supporting tools, are used as test-bench to highlight the potential of this approach. The results show that metrics about the Information Content and the Similarity maps with sufficient precision the differences between ICT- and non-ICT-supported sessions so that it is possible to envision future refinement of the approach.
Immersive visualisations introduce new possibilities for experiencing design, and as such for presenting information. To date, studies in design have focused mostly on immersive visualisations supporting product decisions. However, little attention has been paid to information presentation, e.g. in design reviews, for decisions in the boardroom, and/or for client presentations. This study with industry practitioners identifies information presentation practices and challenges, develops an immersive visualisation prototype, and explores opportunities for the use of immersive visualisations.
Engineering projects involve the progressive development of preliminary information until a final design is reached. Appreciating its status may help make better decisions about task sequencing and may reduce unnecessary iteration. We present an approach to 1) elicit this maturity, 2) aggregate several of its facets per subsystem and generate insights for task prioritisation, and 3) overlaying this information in Augmented Reality onto a physical prototype. The progress is discussed and it is proposed that the approach can aid understanding, communication and management of design progress.
A Product Service System of Systems (PSSoS) is a set of products, services, infrastructure, and a network where its constituent elements exhibit operational and managerial independence. As such, a PSSoS shows PSS characteristics of heterogeneity and evolvability and SoS characteristics of emergence and diversity. Neither existing PSS nor SoS development approaches fully address these characteristics. Thus, PSSoS development raises new challenges. In this paper, we propose a PSSoS meta-model that integrates PSS and SoS key concepts, to provide a basis for future PSSoS development methods.
Crowdfunding is the process of taking a project in need of investment and asking a large group of people to supply the investment. It allows organisations to sell their product before production, reducing the risk of new product development. Organisations such as Tesla and General Electric have used crowdfunding successfully but crowdfunding is yet to be explored as part of a formalised product development framework. This paper includes the business case for commercialising new products with crowdfunding and presents crowdfunding as part of a product development and commercialisation framework.
Knowledge-based engineering (KBE) systems allow an easy adaption of designed artefacts to new functional or design requirements and automating routine design tasks. In the following article the author wants to focus on the three main concepts of linking CAD and KBE and answer the research questions (1) in which way is integration, embedding and coupling of KBE to a standard CAD system like Autodesk Inventor available and (2) how can the single approaches be compared in terms of modelling effort, user competences and system performance.
To objectively and quantitatively study transcribed protocols of design conversations, we apply a semantic analysis approach based on dynamic semantic networks of nouns. We examined the applicability of the approach focused on a dynamic evaluation of the design problem solving process in engineering design educational settings. Using a case of real-world case, we show that the approach is able to determine the time dynamics of semantic factors such as level of abstraction, polysemy, information content, and quantify convergence/divergence in engineering design conversations.
Design & Manufacture Knowledge Mapping is a critical activity in medium-to-large organisations supporting many organisational activities. However, techniques for effective mapping of knowledge often employ interviews, consultations and appraisals. Although invaluable in providing expert insight, the application of such methods is inherently intrusive and resource intensive. This paper presents word co-occurrence graphs as a means to automatically generate knowledge maps from technical documents and validates against expert generated knowledge maps.
The capability to manufacture at home is continually increasing with technologies, such as 3D printing. However, the ability to design products suitable for manufacture and use remains a highly-skilled and knowledge intensive activity. This has led to ‘content creators’ providing vast repositories of manufacturable products for society, however challenges remain in the search & retrieval of models. This paper presents the surrogate model convolutional neural networks approach to search and retrieve CAD models by mapping them directly to their real-world photographed counterparts.
The value of models is well recognised in product and systems engineering. Modelling languages and diagrams are used to capture mental models and to handle model complexity. Literature research indicates that there are only very few approaches to utilise the potential of virtual and augmented reality for supporting tasks in model based (systems) engineering. The paper at hand contributes a new morphology of intuitive interaction for Immersive Abstraction as a holistic approach to extend that coverage. It presents a holistic framework to categorise solutions and future research directions.
Design fixation refers to the designers’ inability to avoid becoming stuck with preexisting ideas in order to generate new ones. With the recent fast advancements and developments, XR has emerged as a powerful promising technology that can shed new light on this issue. Consequently, this paper aims at: (1) investigating the underlying mechanisms of design fixation as reported in literature; (2) exploring the state-of-art in the use of XR technology in design; and (3) identifying ways to mitigate design fixation by employing XR technology.
A design rationale is a representation of the reasoning behind a design concept, explaining why the solution is designed the way it is. This makes design rationale a critical part of concept development. However, there is little exploration on how to build a design rationale. This study sheds light on professional designers’ reasoning in conceptual design, as we examine how design rationales for different concepts are built based on a longitudinal study in the context of two design studios. Particularly the study provides insight into how a design rationale is initiated, matured and finalized.
Although well researched and praised in academic publications, function modelling (FM) does not have gained much traction in industrial application. To investigate into possible reasons for this, this publication researches literature of nine different projects where enhanced function-means modelling has been applied. The projects are analysed for their purpose of FM-use, applied benefits and discovered challenges of the FM approach. From this, the main challenges for FM application are the abstraction level of the modelling language as well as the lack of an interface to CAD modelling.
In this paper, we review empirical studies of multidisciplinary collaboration in design and innovation activities. From 200 papers, we selected 17 for a meta-synthesis review. When revisited and compared, they present common themes and dichotomy in findings. This literature review discusses such diversity, offering a methodological critique of unclear areas. Four emerged themes were identified: (1) Knowledge diversity, (2) Trust, (3) Barrier and (4) Jargon and communication, providing perspectives for further research on how online collaboration will influence multidisciplinary team processes.
Due to increasing cost pressure, companies are expanding their product range and therefore increasingly offering so-called product-service systems (PSS) to increase sales. At the same time, PSS can also contribute to an increase in variety-induced complexity in the company, which ultimately further increases cost pressure. In this article, the causes and effects of variety-induced complexity through products, services and PSS are analysed and the need for a new PSS design method is then demonstrated. Finally, a new framework is presented that enables the design of variety-oriented PSS.
Heavy equipment manufacturers recognise an opportunity to realise customer value gains through offering new Product-Service Systems. Such transition implies a radical shift in how new systems are designed. Based on a set of interviews the paper investigates how radical PSS innovation can be enabled by the use of physical prototypes as boundary object to navigate early PSS design ambiguity. On such basis, suggestions for augmenting existing support tools are made in relation to the existing literature.
The use of product-service systems business models is increasing in today's economy. Because the products that provide the service to the customers incur cost during their lifetime, the method of lifecycle costing finds wide-spread use. However, this paper shows the current methods have some inaccuracies when determining lifecycle costs. The methods do not consider the required number of products necessary to provide the offered service to the customers. This paper describes a new framework for lifecycle costing that includes these cost components.
Computer-Aided Design (CAD) constitutes an important tool for industrial designers. Similarly, Virtual Reality (VR) has the capability to revolutionize how designers work with its increased sense of scale and perspective. However, existing VR CAD applications are limited in terms of functionality and intuitive control. Based on a comparison of VR CAD applications, ImPro, a new application for immersive prototyping for industrial designers was developed. The user evaluations and comparisons show that ImPro offers increased usability, functionality, and suitability for industrial designers.
The concepts of high-velocity, complexity and interdependency are nowadays vividly discussed in design-led innovation management. Design organisations seek to manage innovation in a more dynamic way to ensure competitive advantage and long-term competitiveness. Contextual ambidexterity is advised to be a dynamic capability that can facilitate firms to effectively manage incremental and radical innovation alike. This paper proposes an approach that focuses on the individual and the underlying thinking which bases its foundations on ambidextrous leadership, abductive reasoning and strategic fit.