To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The subject of this article is operators represented on a Fock space which act only on the two leading components of the tensor. We unify the constructions from [Ans07, BL09, BL11, LS08] and extend a number of results from these articles to our more general setting. The results include the quadratic relation satisfied by the kernel of the free cumulant generating function, the resolvent form of the generating function for the Wick polynomials, and classification results for the case when the vacuum state on the operator algebra is tracial. We handle the generating functions in infinitely many variables by considering their matrix-valued versions.
We show a result on propagation of the anisotropic Gabor wave front set for linear operators with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrödinger equation for the free particle. The Laplacian is replaced by any partial differential operator with constant coefficients, real symbol and order at least two.
We show that every ergodic Davies generator associated to any 2D Kitaev’s quantum double model has a nonvanishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair States in terms of a bulk-boundary correspondence.
We give a simple argument which shows that Gabor systems consisting of oddfunctions of $d$ variables and symplectic lattices of density $2^{d}$ cannot constitute a Gabor frame. In the one-dimensional,separable case, this follows from a more general result of Lyubarskii andNes [‘Gabor frames with rational density’, Appl. Comput. Harmon. Anal.34(3) (2013), 488–494]. We use a differentapproach exploiting the algebraic relation between the ambiguity functionand the Wigner distribution as well as their relation given by the(symplectic) Fourier transform. Also, we do not need the assumption that thelattice is separable and, hence, new restrictions are added to the fullframe set of odd functions.
Based on the definition of divisibility of Markovian quantum dynamics, we discuss the Markovianity of tensor products, multiplications and some convex combinations of Markovian quantum dynamics. We prove that the tensor product of two Markovian dynamics is also a Markovian dynamics and propose a new witness of non-Markovianity.
We define and investigate, via numerical analysis, a one dimensional toy-model of a cloud chamber. An energetic quantum particle, whose initial state is a superposition of two identical wave packets with opposite average momentum, interacts during its evolution and exchanges (small amounts of) energy with an array of localized spins. Triggered by the interaction with the environment, the initial superposition state turns into an incoherent sum of two states describing the following situation: or the particle is going to the left and a large number of spins on the left side changed their states, or the same is happening on the right side. This evolution is reminiscent of what happens in a cloud chamber where a quantum particle, emitted as a spherical wave by a radioactive source, marks its passage inside a supersaturated vapour-chamber in the form of a sequence of small liquid bubbles arranging themselves around a possible classical trajectory of the particle.
A quantum local time, which is a generalized operator-valued process, is defined for quantum Brownian motion, and a quantum analogue of the classical Tanaka formula is then established.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.