To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using bentonites to adsorb aflatoxin is an effective method of minimizing the toxicity of aflatoxin to animals and humans. Early studies indicated a more than 10-fold difference in aflatoxin adsorption capacity among different bentonites. The determining mineralogical and chemical properties of the clays in aflatoxin adsorption are still poorly understood. The objective of this study was to test the hypothesis that a bentonite’s selectivity and adsorption capacity for aflatoxin is mainly determined by the ‘size matching’ requirement, on a nm scale, between the non-polar interlayer surface domains and the aflatoxin molecules. The non-polar surface domain size of smectites was varied by (1) selecting smectites with different charge densities; and (2) changing the valence and the size of exchange cations to control the amount of water in the hydration shells of the cations. Infrared spectroscopy and X-ray diffraction were also used to characterize the aflatoxin-smectite complexes to investigate if layer-charge density would affect the bonding strength between aflatoxin and the minerals. A large aflatoxin adsorption capacity and high selectivity for aflatoxin were achieved by selecting smectites that had low charge density as represented by their <110 meq/100 g cation exchange capacity. An individual smectite’s selectivity and adsorption capacity for aflatoxin could be enhanced or weakened by replacing the exchange cation. When the smectite was saturated with divalent cations that have smaller hydrated radius (e.g. Ba2+), the smectite’s adsorption capacity and affinity for aflatoxin were enhanced. Aflatoxin entered the interlayer of all six smectites tested. The strength of its bonding to the smectites was not affected by the layer-charge density of the smectites. The results confirmed the importance of nm-scale polarity and size match between aflatoxin molecules and the adsorbing sites on smectite. The high selectivity for aflatoxin can be achieved by selecting a smectite with adequate charge density or by replacing the exchange cations with divalent cations that have low hydration energy.
The study of confined water dynamics in clay minerals is a very important topic in aluminosilicate-surface chemistry. Aluminosilicates are among the most technologically versatile materials in industry today. Dielectric spectroscopy is a very useful method for investigating the structure and dynamics of water adsorbed on solid matrix surfaces and water in the vicinity of ions in solutions. Use of this method for the study of clay minerals has been underutilized to date, however. The main goal of the present research was to understand the relaxation mechanisms of water molecules interacting with different hydration centers in clay minerals, with a view to eventually control this interaction. Two types of natural layered aluminosilicates (clay minerals) — montmorillonite with exchangeable K+, Co2+, and Ni2+ cations and kaolinite with exchangeable K+ and Ba2+ cations — were examined by means of dielectric spectroscopy over wide ranges of temperature (from -121°C to +300°C) and frequency (1 Hz–1 MHz). An analysis of the experimental data is provided in terms of four distributed relaxation processes. The low-temperature relaxation was observed only in montmorillonites and could be subdivided into two processes, each related to a specific hydration center. The cooperative behavior of water at the interface was observed in the intermediate temperature region, together with a proton percolation. The dielectric properties of ice-like and confined water structures in the layered clay minerals were compared with the dielectric response observed in porous glasses. The spatial fractal dimensions of the porous aluminosilicates were calculated by two separate methods — from an analysis of the fractality found in photomicrographs and from the dielectric response.
To identify the mechanisms for and to estimate the photochemical reaction efficiency of molecules in solid-state host materials is difficult. The objective of the present research was to measure the photogeneration efficiency of the methylviologen cation radical (MV+•) hosted in a semi-transparent hybrid film composed of MV2+ and saponite, a 2:1 clay mineral. MV+• is the one-electron reduced species of MV2+. MV+• was generated by UV irradiation of these films. The fluorescence intensity of MV2+ and the photogeneration efficiency of MV+• depended on the loading level of MV2+. When the loading level of MV2+ was high (75% of the cation exchange capacity (abbreviated as % CEC) of saponite), its fluorescence was reduced considerably because of the self-fluorescence quenching reaction, and the photogeneration efficiency of MV+• was relatively high (quantum yield φ = 3.5×10–2) compared to that of films with low adsorption density (10% CEC, φ = 1.1×10–2). Furthermore, when the loading level of MV2+ was very low (0.13% CEC), a self-fluorescence quenching reaction was not observed and MV+• was not generated. From these observations, one of the principal mechanisms of the self-quenching reaction and MV+• formation in saponite is the electron transfer reaction between excited MV2+ and adjacent MV2+ molecules in the ground state.
Surface and groundwaters become contaminated with dyes due to discharge into the environment, which increases the risk of a number of human diseases. Many methods of dye removal from discharge waters at the source have been developed, but few are effective and the most effective method (activated carbon) is very expensive. The purpose of the present study was to test a natural zeolite (clinoptilolite type) as a potentially effective and inexpensive method to remediate dye discharge into the environment. In the removal experiments, malachite green (MG) and rhodamine B (RB) cationic dyes were used. The effects of various experimental conditions such as initial dye concentration, pH, and temperature on dye removal were investigated in a single-dye system. The degree of removal of MG and RB increased with increasing initial concentration and temperature of the dye in a single-dye system. An increase in pH decreased RB removal, but increased MG removal. In a two-dye system, MG and RB adsorption decreased by ~41.74 and 21.51%, respectively, due to competitive adsorption of the two dyes. Adsorption reflected a pseudo-second order kinetics model with high correlation coefficients (r2 = 0.996–1.000) in single-dye and two-dye systems. Adsorption was most consistent with the Langmuir-1 and the Redlich-Peterson isotherm models with high correlation coefficients (r2 = 0.987–0.999) in both systems. The Langmuir-1 adsorption capacities were determined as 43.86 and 44.25 mg/g for the removal of MG and RB in single-dye systems, respectively. In a two-dye system, the Langmuir-1 capacities were 20.62 and 31.54 mg/g for the removal of MG and RB, respectively.
The present study introduces an overview of gentamicin-clay mineral systems for applications in biomedicine and then focuses on the development of a series of gentamicin/clay hybrid materials to be used as the bioactive phase of hydroxypropylmethylcellulose (HPMC) to produce bionanocomposite membranes possessing antimicrobial activity of interest in wound-dressing applications. Gentamicin (Gt) was adsorbed from aqueous solutions into a montmorillonite (Cloisite®-Na+) to produce intercalation compounds with tunable content of the antibiotic. The hybrids were characterized by CHN chemical analysis, energy-dispersive X-ray analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis, confirming the intercalation of Gt by an ion-exchange mechanism. The release of Gt from the hybrids was tested in water and in buffer solution to check their stability. Hybrids with various amounts of Gt were incorporated into a HPMC matrix at various loadings and processed as films by the casting method. The resulting Gt-clay/HPMC bionanocomposites were characterized by means of field-emission scanning electron microscopy, and were also evaluated for their water-adsorption and mechanical properties to confirm their suitability for wound-dressing applications. The antimicrobial activity of the bionanocomposite films was tested in vitro toward various microorganisms (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, Acinetobacter baumannii, and Klebsiella pneumonia), showing a complete bacterial reduction even in films with small Gt contents.
Most natural and synthetic rubbers have inherently high flammability, a property which limits their uses. The aim of the present work was to study the effect of organo-montmorillonite (OMMT) and modified OMMT on the flame-retardance and mechanical properties of natural rubber (NR) composites. The OMMT was modified with hyper-branched polymer via condensation polymerization between the intercalation agent, N,N-di(2-hydroxyethyl)-N-dodecyl-N-methylammonium chloride, and the monomer, N,N-dihydroxyl-3-aminomethyl propionate. This modified OMMT was then reacted with phosphate, and a novel flame-retardant hyper-branched organic montmorillonite (FR-HOMMT) was thus obtained. The surface morphology, interlayer space, interlamellar structure, and thermal properties of these modified clays were investigated by Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. The FR-HOMMT showed increased basal spacing and better thermal stabilities due to the different arrangement and thermal stability of the novel organic macromolecular surfactant. Natural rubber NR/OMMT and NR/FR-HOMMT composites were prepared by conventional compounding with OMMT and the phosphorus-based organo-montmorillonite. The cure characteristics, tensile strength, wear resistance, thermal stabilities, and flame-retardant properties were researched and compared. The best dispersion of this modified clay was observed for 20 phr (parts per hundred of rubber) of FR-HOMMT-filled composite, which resulted in the best mechanical performance with an increase of 47% in tensile strength, of 40% in elongation at break, and decrease of 140% in abrasion loss compared with 20 phr of the OMMT-filled matrix. A mechanism for reinforcing and flame retardance is proposed here. The 'anchor' effect caused by the hyper-branched polymer may decrease the number and size of the voids in the NR matrix, and thus increase the crack path during tensile drawing. Meanwhile, the flame retardance of the OMMT and the phosphate may increase the number of carbonaceous layers, thus inhibiting the degree of pyrolysis of the NR matrix during burning.
The transformation process between palygorskite and smectite was studied by examining the morphological and structural relationships between these two minerals in an assemblage from the Meigs Member of the Hawthorne Formation, southern Georgia. Studied samples were related to an alteration horizon with a tan clay unit above and a blue clay unit below. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to study the mechanism of transformation.
From AFM data, both clay units contain euhedral palygorskite fibers. Many fibers are found as parallel intergrowths joined along the [010] direction to form ‘raft-like’ bundles. Degraded fibers, which are common in the tan clay, have a distinctly segmented morphology, suggesting a dissolution texture. Many of the altered palygorskite fibers in the tan clay exhibit an oriented overgrowth of another mineral phase, presumably smectite, displaying a platy morphology. This latter mineral forms along the length of the palygorskite crystals with an interface parallel to {010} of the palygorskite. The resulting grain structures have an elongate ‘wing-like’ morphology.
Imaging by TEM of tan clay material shows smectite lattice-fringe lines intergrown with 2:1 layer ribbon modules (polysomes) of the palygorskite. These features indicate an epitaxial overgrowth of smectite on palygorskite and illustrate the structural relationship between platy overgrowths on fibers observed in AFM data. The epitaxial relationship is described as {010} [001] palygorskite ‖ {010} [001] smectite.
Energy dispersive spectroscopy indicates that the smectite is ferrian montmorillonite. Polysomes of palygorskite fibers involved in these textures commonly vary and polysome widths are consistent with double tetrahedral chains (10.4 Å), triple tetrahedral chains (14.8 Å), quadruple tetrahedral chains (21.7 Å) and quintuple tetrahedral chains (24.5 Å).
The transformation of palygorskite to smectite and the resulting intergrowths will cause variations in bulk physical properties of palygorskite-rich clays. The observation of this transformation in natural samples suggests that this transformation mechanism may be responsible for the lower abundance of palygorskite in Mesozoic and older sediments.
Basic Al chloride, sulfate and nitrate were prepared by hydrolysis of Al chloride followed by precipitation with a Na sulfate solution, then re-dissolution in a Ba nitrate solution. The three laboratory-synthesized oligomers and solid, commercial chlorhydrol were characterized by X-ray diffraction, 27Al nuclear magnetic resonance and scanning electron microscopy coupled with energy dispersion spectroscopy analysis. The results showed that basic Al chloride contained unknown crystalline Keggin species. In commercial chlorhydrol, Al13 species were present in small amounts aside from the monomeric species. Basic Al nitrate or sulfate contained exclusively Al13 species. Pillaring a raw montmorillonite with different Al complexes in very concentrated media using both the clay and the oligomer in the solid state led to different pillared structures. Characterization by transmission electron microscopy, nitrogen adsorption, and thermogravimetric analysis of the materials obtained shows that pillaring with sulfate or chloride oligomers gave very heterogeneous pillared clays. Although basic Al nitrate and commercial chlorhydrol give better ordered and well organized pillared clays, the stacking obtained with chlorhydrol is greater.
The contamination of aquatic environments by toxic metals such as radionuclides is of great concern because of the tendency of those metals to accumulate in the vital organs of humans and animals, causing severe health problems. The objective of this study was to investigate the use of natural and modified magadiite clay as an adsorbent to remove Th(IV), U(VI), and Eu(III) from aqueous solutions. Magadiite from the Amazon region, Brazil, was modified chemically with 5-mercapto-1-methyltetrazole (MTTZ) using a multi-step or heterogeneous synthesis pathway. The natural and modified materials were characterized using 29Si and 13C nuclear magnetic resonance, scanning electron microscopy, nitrogen gas adsorption, and elemental analysis. The physical-chemical properties of the chemically modified magadiite sample were modified, e.g. the specific surface area changed from 35.0 to 678.9 m2 g−1. The ability of the magadiite to remove Th(IV), U(VI), and Eu(III) from aqueous solution was then tested by a series of adsorption isotherms adjusted to a Sips equation. The effects of properties such as pH, contact time, and metal concentration on the adsorption capacity were studied. The adsorption maxima were determined to be 7.5 × 10−3, 9.8 × 10−3, and 12.9 × 10−3 mmol g−1 for Th(IV), U(VI), and Eu(III), respectively. From calorimetric determinations, the quantitative thermal effects for all these cations/basic center interactions gave exothermic enthalpy, negative Gibbs free energy, and positive entropy, confirming the energetically favorable conditions of such interactions at the solid/liquid interface for all systems.
Between 1967 and 1988 Maryanne Amacher's City-Links series comprised radio broadcasts, sound installations and interdisciplinary performances featuring her practice of mixing sonic material from multiple remote locations joined via telecommunications infrastructure. These works reflect Amacher's compositional elevation of the process of sonic perception alongside musical material, an approach that would evolve to inform her later work in which she dealt with the musical potential of psychoacoustic phenomena known as auditory distortion products. This article aims to provide an overview of the City-Links series as a unique product of the experimentation in post-war avant-garde music and visual and conceptual art. After a synopsis of Amacher's early compositional development, I offer a comparison between Amacher's City-Links and John Cage's radio works, exploring different contemporary approaches to transmission and broadcast as a compositional medium. I then situate the site-specificity of the City-Links works within the extramusical frame offered by Amacher's contemporary Robert Smithson's site/non-site dialectic. The article finally suggests the necessity for a more holistic examination of Amacher's legacy that accounts for both the musicological and art-historical implications of her work.
The processes of clay mineral formation were studied in seven podzol profiles developed on granitic regoliths in the Polish part of the Tatra Mountains. The selected profiles have similar parent material and macroscopically represent different stages of soil development (from initial to advanced). Bulk soil material (<2 mm fraction) and separated clay fractions (<2 µm) were studied using a petrographic microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy-dispersive spectrometry methods. The mineral compositions of the bulk soil samples are more or less the same (quartz, feldspars, mica and minor amounts of other phyllosilicates). The clay fractions are composed of mica and mixed-layer minerals which contain hydrated interlayers of vermiculitic and/or smectitic type, and kaolinite. Smaller amounts of chlorite, feldspars and quartz were also identified. Chlorite is present almost exclusively (except for one profile) in lower soil horizons (C, B/C, B). The amount of minerals with hydrated interlayers increases up the profiles. Kaolinite is present in all the samples except for the lowermost soil horizons (C) of two of the profiles. In some of the B horizons, the formation of hydroxy interlayers within hydrated interlayers is observed. The main processes of clay mineral formation recognized in the soils studied are: inheritance from the parent rocks; crystallization of kaolinite from soil solutions; the formation of dioctahedral vermiculite at the expense of inherited dioctahedral mica, and the formation of dioctahedral smectite at the expense of vermiculite. The recognized sequence of transformation is as follows: M → R0 M-V (12 Å or 14 Å) → R0 M-12 Å V → R1 M-12 Å V → 12 Å V → V-S → S. Observed formation of hydroxy interlayers seems to be pH dependent, starting when the pH ⩾ 4.4. The process of dissolution of primary silicates occurring simultaneously with the transformation is also documented.
Smectite illitization was investigated in felsic volcaniclastic rocks from a drill core near the Kakkonda active geothermal system, Japan, using high-resolution transmission electron microscopy (HRTEM) that provided one-dimensional structure images of mixed-layer illite-smectite (I-S) minerals normal to [M0]. Simulated images of a rectorite-like structure revealed that smectite can be distinguished from illite in mixed-layer I-S by HRTEM if the basal spacing of smectite is larger than that of illite. The larger basal spacing of smectite, 1.3 nm under HRTEM, was obtained by intercalation of dodecylammonium ions into smectitic interlayers. In simulated and observed images normal to [hk0], tetrahedral (T) and octahedral (O) cation planes are imaged as dark lines, an illitic interlayer as a bright line, and a smectitic interlayer as a dark line sandwiched between two bright lines.
The samples are from depths of 435 m (5% I; R0), 635 m (35% I; R0), 656 m (62% I; R1), and 756 m (85% I; R3) where % I is the percentage of illite layers in a sample and R is the Reichweite parameter. Sample 435 consisted mostly of smectite, and illite layers occurred, though small in amount, as M1 units (module of type 1, defined as consisting of two polar T-O-T silicate layers with one central illitic interlayer and two, half smectitic interlayers at the outermost surface; the number corresponds to that of central illitic interlayers). The M1 units were dominant and isolated and consecutive smectite layers (>2) were present in sample 635. Sample 656 consisted mostly of packets of M1 units of 1 to 5 layers containing M2 to M5 units occasionally. Isolated or consecutive smectite layers (>2) were not present in 656. Illite layers occurred almost entirely as M1 units in samples 435, 635 and 656, and the number of M1 units increased with increase in % I. Sample 756 was characterized by the presence of M2 to M10 units accompanied by smectitic interlayers at the external surface and the absence of M1 units and isolated smectite layers. The HRTEM data strongly suggest that illitization in a hydrothermal system occurs by precipitation of M1 units for mixed-layer I-S minerals up to 60% I. This does not require the presence of precursor smectite. Illitization of I-S minerals with >60% I proceeds by precipitation of various types of Mn (n ⩾ 2) units. Illite occurs only as Mn (n ⩾ 1) units throughout illitization.
The atomic structure of dioctahedral 2:1 phyllosilicate edge surfaces was calculated using pseudopotential planewave density functional theory. Bulk structures of pyrophyllite and ferripyrophyllite were optimized using periodic boundary conditions, after which crystal chemical methods were used to obtain initial terminations for ideal (110)- and (010)-type edge surfaces. The edge surfaces were protonated using various schemes to neutralize the surface charge, and total minimized energies were compared to identify which schemes are the most energetically favorable. The calculations show that significant surface relaxation should occur on the (110)-type faces, as well as in response to different protonation schemes on both surface types. This result is consistent with atomic force microscopy observations of phyllosilicate dissolution behavior. Bond-valence methods incorporating bond lengths from calculated structures can be used to predict intrinsic acidity constants for surface functional groups on (110)- and (010)-type edge surfaces. However, the occurrence of surface relaxation poses problems for applying current bond-valence methods. An alternative method is proposed that considers bond relaxation, and accounts for the energetics of various protonation schemes on phyllosilicate edges.
The placement of metal oxide pillars between clay mineral layers modifies their physical-chemical properties, including surface area, acidity, and catalytic activity. Aluminum is the most commonly used pillar cation, but the use of Fe offers a distinct opportunity to expand the range of catalytic behavior. The purpose of this study was to prepare Fe-pillared Laponite and montmorillonite and to characterize the resulting Fe phase(s). Laponite or montmorillonite suspension was mixed with different pillaring solutions containing Al oligomer and/or Fe oligomer with Fe:(Al+Fe) percent ratios ranging from 0 to 100%. The Al oligomer was obtained by hydrolysis of A1C13·6H2O with NaOH at pH 4.4 and the Fe oligomer was prepared by FeCl3 hydrolysis with Na2CO3 at pH 2.2. The pillared clay was obtained by adding the oligomer to the clay suspension, then heating to 300°C for 3 h. The Fe oligomer and the pillared clay minerals were characterized by variable-temperature Mössbauer spectroscopy, X-ray powder diffraction, and chemical analysis. The unheated Fe oligomer was akaganeite, an Fe oxyhydroxide phase. Heating the Fe oligomer to 300°C transformed the akaganeite to hematite, but heating it in the presence of the clay protected it, at least partially, from this transformation, creating instead a phase which resembled a more poorly ordered akaganeite or a mixture of akaganeite and poorly ordered hematite. Mixing of Al and Fe oligomers in the pillaring solution had no effect on the magnetic hyperfine field of the Fe pillars, indicating that Al forms separate pillars rather than substituting for Fe in the pillar. A small fraction (4%) of the Fe pillar resisted reductive dissolution by citrate-bicarbonate-dithionite.
The aim of this work was to investigate whether neoformed Ni-phyllosilicates can be observed and identified using transmission electron microscopy (TEM) in combination with energy dispersive spectroscopy (EDS). The investigations focused on Ni-phyllosilicates formed from Ni-doped montmorillonite. The reaction conditions (pH 8, [Ni]initial = 660 and 3300 µM, 0.2 M Ca(NO3)2) employed were similar to those used in previous polarized extended X-ray absorption fine structure (P-EXAFS) investigations of neoformed Ni-phyllosilicates in a Ni-montmorillonite system.
The TEM investigations of Ni-doped montmorillonite revealed the presence of small, thin particles consisting of coherent stacks that yielded only three to five lattice fringes with spacings consistent with smectites. These small particles were neoformed phyllosilicates, based on the fact that the small particles were only observed in Ni-doped samples and their Ni content, as determined from EDS analysis, was high (up to 10 wt.% NiO). Furthermore, the particles did not possess the characteristic properties of montmorillonite particles, such as a 2:1 Si to Al ratio; instead these particles were rich in Si (up to 75 wt.% SiO2). Unlike montmorillonite, these particles did not contain any Fe. The particles were also significantly more resistant to electron beam damage than montmorillonite particles, and EXAFS measurements confirmed the presence of neoformed Ni-phyllosilicates.
The TEM study further indicates the presence of a variety of additional minerals (e.g. cristobalite, halloysite) and an X-ray amorphous Si-rich phase. A Ni signal could only be detected in the latter phase at high Ni loadings (403 µmol/g), suggesting that Ni uptake at low metal loadings (<90 µmol/g) is mainly controlled by the neoformation of phyllosilicates.
Synthesized zeolites are extremely important as industrial minerals and are most commonly prepared using organic templates. Because these organic templates present undesirable environmental hazards, a synthesis method which avoids their use is desirable. The objective of the current study was to develop such a synthesis method. Zeolite NaY was synthesized hydrothermally starting from a mixture of 1.0 Al2O3:10 SiO2:4.6 Na2O:180 H2O molar gel composition, without adding any organic additives. Experiments were carried out to investigate the effects of molar compositions including water content (H2O/SiO2), crystallization conditions including temperature, and time on the crystal size and yield of NaY-type zeolite. The results showed that increasing the crystallization time from 5 to 12 h increased the crystal size, while increasing the crystallization temperature from 80 to 100°C also increased crystallinity. The crystal species of zeolite NaY were characterized by X-ray diffraction, X-ray fluorescence, and scanning electron microscopy analysis. Zeolite NaY crystals in the size range 25–150 nm were synthesized successfully over a period of 8 h at 100°C.
High temperature and a large salt content weaken the surface hydration ability of clay particles in drilling fluid, reduce zeta potential, agglomerate clay particles, increase particle size, and destroy the stability of drilling mud. A filtrate reducer is required, therefore, to maintain the zeta potential of the clay, prevent the agglomeration of clay particles, and maintain good performance of the drilling mud at high temperature and high salt content. To prepare temperature- and salt-resistant polymer filtrate reducer, a betaine monomer was synthesized and copolymerized with a conventional monomer. A betaine monomer 3-(dimethyl (4-vinyl benzyl) ammonia) propyl sulfonate (DVBAPS) was synthesized and then used to create a copolymer filtrate reducer. The copolymer filtrate reducer, referred to as PAAAND, was prepared by free radical copolymerization with 2-acrylamide-2-methylpropane sulfonic acid, acrylic acid, N-vinyl pyrrolidone, acrylamide, and DVBAPS. The optimum synthesis conditions were determined by single factor evaluation, and the chemical structure of the PAAAND was confirmed by Fourier-transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Results from particle-size distribution and zeta-potential measurements showed that PAAAND increased the zeta potential of clay particles and the distribution width of particles size, which served to maintain the stability of the drilling mud under high-temperature and high-salt conditions. The results of scanning electron microscopy showed that PAAAND made the filter cake formed by clay particles smoother and denser, which reduced filtration loss. The reduction in filtrate loss continued even after aging at high temperature, and, thus, PAAAND performed better than commercial products.
Remembered largely for the controversial rebuilding of the Bank of England and for his role in the construction of New Delhi, Herbert Baker (1862–1946) was responsible for architecture in the wider British empire as well as his native England. This article appraises ways in which Baker and his work linked these spheres through an analysis of India’s High Commission in London, India House (1928–30), the first extended scholarly account of the building. In doing so, it focuses on how architecture designed by Baker during the interwar period evoked the assumption by India of ‘dominion status’, a label applied to imperial regions deemed to have attained a position of equality alongside Britain on the basis of their constitutional development. The article locates the new High Commission at the convergence of an interwar imperial vision emphasising the status of the dominions and India’s path towards independence, contributing to an architectural history of British imperialism as urged for in recent years. Constructed at the heart of the imperial capital, India House was a highly visible declaration of India’s transition from a position of dependence to one approaching parity with Britain and the ‘old’ or ‘white’ dominions. As well as substantiating Baker’s commitment to India’s envisaged future as a dominion, the building shows significant consistencies of approach and intent when set against contemporaneous work in New Delhi, manifesting interconnections between the two spaces and the pivotal role of the architect in linking them.