To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Rebels regularly provide public services, especially legal services, but the consequences of such programs are unclear. We argue that rebel courts can boost civilian support for insurgency and augment attack capacity by increasing the legitimacy of the rebellion, creating a vested interest in rebel rule, or enabling rebel coercion of the civilian population. We study the impact of the Taliban's judiciary by leveraging cross-district and over-time variation in exposure to Taliban courts using a trajectory-balancing design. We find that rebel courts reduced civilian support for the government and increased it for the Taliban, and were associated with more attacks and more coalition casualties. Exploring mechanisms, we find that courts resolved major interpersonal disputes between civilians but also facilitated more insurgent intimidation of civilians, and that changes in public opinion are unlikely to have been driven solely by social desirability bias. Our findings help explain the logic of rebel courts and highlight the complex interactions between warfare and institutional development in weak states.
To determine the relationships between the symmetry of the overall pyrophyllite and talc structure and the symmetry of individual layers, the geometry and symmetry of each 2:1 layer of pyrophyllite and talc were analyzed. For each, the previously published, refined unit cell may be rotated clockwise by ~60° for comparison to a layer unit cell. In pyrophyllite, the layer unit cell is ideal and shown to be orthogonal with C2/m symmetry. The agreement between the refined atomic coordinates and those calculated for the layer with C2/m symmetry confirms that the symmetry of the pyrophyllite layer is C2/m. The obliquity of the pyrophyllite refined cell results from the layer stacking and the choice of unit cell, but the interlayer stacking sequence does not disturb the layer symmetry. In contrast, talc has an oblique layer cell, without a mirror plane. For the most part, the distortion of the talc 2:1 layer is probably caused by an elongation of unshared O-O lateral edges around M1 that creates a slight corrugation of the octahedral sheet surface. Perhaps of lesser importance, the distortion of the talc layer cell may result from Coulombic interactions between cations of adjacent layers, and these cation-to-cation distances are sufficiently large (~6–7.5 Å) that the weak van der Waals forces that stabilize the stacking are not overcome. Because pyrophyllite has a vacant octahedral site, similar interactions are not present, and this results in a more idealized layer symmetry.
Phyllosilicates consisting of layers with an orthogonal cell and mirror plane (pyrophyllite, kaolinite, sudoite) were shown to have similar stacking faults. In these structures, the 2:1 or 1:1 layers have uniform orientation, and stacking faults occur owing to interstratifications of two alternative interlayer displacements in the same crystal that are related by a mirror plane in the projection on the (001) plane. In talc, stacking faults are associated with layer rotations by ±120°, whereas the lateral displacement between the adjacent tetrahedral sheets across the interlayer region is relatively ordered.
The dehydration and rehydration processes of the clay mineral palygorskite (PFl-1) were studied by textural analysis, thermogravimetric analysis connected with mass spectrometry (TGA-MS), and 29Si and 1H solid-state NMR techniques. The TGA-MS results clearly reveal weight losses at maxima of 70°C, 190°C, 430°C and 860°C. PFl-1 is characterized by a micropore area of 93 m2/g, corresponding to a micropore volume of 47 mm3/g. These values are also obtained for the sample heated up to 200°C for 20 h. Further heating at 300°C produces a collapse of the structure, as shown by the almost complete loss of microporosity.
The 29Si NMR spectra of palygorskite show two main resonances at −92.0 and −97.5 ppm, attributed to one of the two pairs of equivalent Si nuclei in the basal plane. A minor resonance at −84.3 ppm is attributed to Q2(Si-OH) Si nuclei. The resonance at −92.0 ppm is assigned to the central Si position, while the resonance at −97.5 ppm is assigned to the edge Si sites. It is confirmed bysolid-state 29Si and 1H NMR that nearly complete rehydration is achieved by exposing palygorskite samples that have been partially dehydrated at 150°C and 300°C, to D2O or water vapor at room temperature. When the rehydration is accomplished with D2O, the atoms are disordered across all the protons sites.
Far-infrared (FIR) analysis of synthetic Mg-, Ni-, Co-, and Fe-phlogopites coupled with structural data from X-ray diffraction revealed that the K interlayer environments are directly related to octahedral sheet composition and geometry. The general phlogopite formula, KM32+(Si3Al)O10(OH)2, was varied according to octahedral compositions, where M2+ = Mg2+, Fe2+, Co2+, and Ni2+. Octahedral substitutions have a direct effect on the b lattice parameter, which is related to the tetrahedral-octahedral sheet misfit and manifested by change in the tetrahedral rotation angle (α). The ditrigonal interlayer cavity geometry and the potential for retention of the compensating cations therefore varies according to the ionic size and the types and oxidation state of octahedral cations. These structural features appear as frequency shifts on FIR spectra. When Mg2+ is replaced by a smaller cation, Ni2+, the b parameter decreases and the tetrahedral rotation angle, α, increases, inducing the collapse of the ditrigonal ring. When this happens, the local anisotropy of the interlayer site increases, resulting in every other six out of 12 K-O bonds becoming shorter and the in-plane K-O vibration band shifts slightly to greater wavenumbers. Synthetic phlogopites with octahedral substitutions by cations of larger ionic radii (i.e. Co2+ and Fe2+) exhibit b parameter increases, where in the case of the annite end-member, α decreases to almost 0°. As α decreases, compensating cation sites become more hexagonal like and the nearest K-O bond increases in length. The K-O vibration bands move toward much smaller wavenumbers. Far infrared offers the potential for a new approach to study the retention of interlayer cations in other phyllosilicates and the mechanisms by which they are altered, such as heating or by weathering reactions in the environment.
Using first-principles molecular-dynamics simulations, probable inner-sphere complexes of Fe2+ adsorbed on the edge surfaces of clay minerals were investigated. Ferrous ions are important reductants in natural processes and their properties can be altered significantly by complexation on edge surfaces of clay minerals. However, the microscopic picture of adsorption sites and structures of Fe2+ is difficult to reveal with modern experimental techniques and, therefore, remains unclear. From the results of first-principles molecular-dynamics simulations, evidence has been provided that complexes on ≡Si—O sites were the most stable forms, which should be responsible for the experimentally observed pH-dependent uptake. Such complexation was found to be strong enough to distort the local coordination structures of Si—O tetrahedra in the substrate. Analyses showed that Fe2+—Owater coordination structures were dominated by the solvent with surface groups participating in the complexes via H bonding. The present study provided a microscopic basis for understanding the chemical processes involving surface-complexed Fe2+ ions.
W. B. Yeats's dramatic career was transformed in the 1910s through a series of collaborations in London. In an essay from the period, “Certain Noble Plays of Japan,” he writes: “I have invented a form of drama, distinguished, indirect and symbolic.” This form, like many other modernist inventions, is better understood as something else, in this case the alchemy of his earlier work, some eclectic influences, and the contributions of his American, English, French, and Japanese collaborators. Together, this group of artists drew on Irish mythology, the occult, the continental avant-garde, and—as often has been stressed—Japanese noh. Originally, the “Certain Noble Plays” essay was published as an introduction to a related noh project, Ezra Pound's liberal completion of Ernest Fenollosa and Hirata Kiichi's incomplete translations. There have been at least four book-length studies on the relationship between Yeats and noh, as well as many theses and articles. It remains an exemplum of transnational modernist theatre.
Polymer–filler interactions play a major role in determining the antibacterial activity of organoclay in nanocomposites. The objective of the current study was to determine the effect of polymer type on the antibacterial properties of an organically modified clay – cloisite 10A (C10A) – using poly-ε-caprolactone (PCL) and poly-L-lactic acid (PLA) polymeric systems. Nanocomposite characterization using atomic force microscopy (AFM) showed an increase in roughness upon addition of the clay mineral, and X-ray diffraction (XRD) showed intercalation of the selected polymers into the interlayer spaces of the clay. Transmission electron microscopy (TEM) analysis supported the XRD findings. C10A in PCL thin films enhanced the bactericidal activity against Staphylococcus aureus when compared to the C10A in PLA. The observed change could be the result of pronounced levels of interaction between the filler and polymer matrix in the C10A-PLA nanocomposite when compared to C10A-PCL. The higher interaction levels could hinder the diffusion of bactericidal agents from the nanocomposite membranes. The present study provided insight into the nature of interaction between nanocomposite components and its impact on bioactivity, which can have applications in terms of generating engineered antibacterial materials.
Clay minerals, such as layered double hydroxide (LDH) and montmorillonite (MMT), have attracted a great deal of attention for biological applications. Along with the rapid development of nanotechnology, public concern about the potential toxicity of nanoparticles is growing. In the present work, cytotoxicity of LDH and MMT was assessed in terms of inhibition of cell proliferation, generation of oxidative stress, and induction of inflammation response. Moreover, the biokinetics of LDH and MMT were evaluated; biokinetics provides information about in vivo absorption, distribution, and excretion kinetics. The results demonstrated that both LDH and MMT inhibited cell proliferation at relatively large concentrations and after long exposure time compared to other inorganic nanoparticles, although they generated reactive oxygen species (ROS). LDH induced pro-inflammatory cytokines in a size-dependent manner. Biokinetic study revealed that, after single-dose oral administration to mice, both LDH and MMT had extremely slow oral rates of absorption and did not accumulate in any specific organ. All the results suggest great potential of clay minerals for biological application at safe levels.
Bacteria play an important role in determining the properties and behavior of clay minerals in natural environments and such interactions have great potential for creating stable biofilms and carbon storage sites in soils, but our knowledge of these interactions are far from complete. The purpose of this study was to understand better the effects of bacteria-generated biofilms on clay interlayer expansion. Mixtures of a colloidal, 2-water hectorite clay and Pseudomonas syringae in a minimal media suspension evolve into a polysaccharide-rich biofilm aggregate in time-series experiments lasting up to 1 week. X-ray diffraction analysis reveals that upon aggregation, the clay undergoes an initial interlayer contraction. Short-duration experiments, up to 72 h, result in a decrease in the d001 value from 1.50 to 1.26 nm. The initial interlayer contraction is followed in long-duration (up to 1 week) experiments by an expansion of the d001 value of 1.84 nm. The expansion is probably a result of large, biofilm-produced, polymeric molecules being emplaced in the interlayer site. The resultant organo-clay could provide a possible storage medium for carbon in a microbial colony setting.
The Clay Minerals Society published a complete characterization scheme for its ‘Source Clays’ but not for its ‘Special Clays’. To address this issue, the specific surface areas (SSAs) of the 16 special clays from The Clay Minerals Society were determined using the Brunauer, Emmett and Teller (BET) method of adsorption of an inert gas. Two BET measurements were performed for each of the 16 special clays, and the average BET SSA of each of the special clays was determined. The BET SSA of cookeite is reported for the first time. In the present study, special clays from The Clay Minerals Society are classified under three groups based on their BET special surface area values as Group-I special clays, with BET values of 0.1–10 m2/g, Group-II special clays, with BET values of 10–100 m2/g, and Group-III special clays, with BET values >100 m2/g. Comparisons which proved interesting were the those involving the mixed-layer clays and the synthetic clays. The systematic approach employed in this paper will allow for better comparisons to be made between different clays and will provide a comprehensive database for future applications of such material (e.g. as catalyst carriers, as adsorbents in waste treatments, etc.).
As advances in technology have led to increased use of bentonites, more high-quality bentonite has been sought. The volume of high-quality bentonites available is shrinking and use of bentonite reserves containing impurities is inevitable. The aim of this study was to apply Box–Behnken experimental design and response surface methodology to model and optimize some operational parameters of a hydrocyclone to produce three groups of bentonite concentrates. The four significant operational parameters of hydrocyclones are feed solid ratio, inlet pressure, vortex diameter, and apex diameter, and these parameters were varied and the results evaluated using the Box–Behnken factorial design. In order to produce bentonite concentrates using a hydrocyclone, mathematical model equations were derived by computer simulation programming applying a least-squares method, using Minitab 15. Second-order response functions were produced for the swelling and to establish the quantity of smectite in the bentonite concentrates. Predicted values were found to be in good agreement with the experimental values (R2 values of between 0.829 and 0.999 for smectite and three different swelling groups for the bentonites). Although in natural states these bentonites are not suitable for industrial use, enhancements were obtained giving up to 81.45% smectite and by increasing swelling by 194% for the three bentonite groups. The swelling properties of the bentonites are improved by increasing the proportion of smectite content. The graphics were designed to relate swelling and smectite content according to the two-dimensional hydrocyclone factors, and each factor was evaluated in itself. The present study revealed that the Box–Behnken and response surface methodology can be applied efficiently to model the hydrocyclone for bentonite; the method is economical and provides the maximum amount of information in a short period of time and with the smallest numberof experiments.
Recently, studies on the use of polymer nanomaterial composites as pour-point depressants (PPD) have drawn much attention, but the crystallization properties and improved rheological performance of waxy crude oils using nanoclay-based composite PPDs have rarely been reported. In this paper, montmorillonite (Mnt) was first organically modified using octadecyltrimethylammonium chloride (C21H46NCl, or stearyltrimethylammonium chloride) in aqueous solution. Then, the organically modified Mnt (OMnt) material was dispersed into a polyoctadecylacrylate (POA) matrix to prepare a POA/OMnt composite PPD by melt blending. The composition, structure, and morphology of Mnt, OMnt, and the POA/OMnt composite PPDs were investigated. The results showed that the OMnt and POA were compatible and that the OMnt was exfoliated into several sheets in the POA matrix. Subsequently, the isothermal crystallization kinetics of the POA/OMnt composite PPDs showed that small amounts of OMnt had a dramatic impact on POA chain motion during crystallization and facilitated POA crystallization. After it was added to a waxy crude oil, the POA/OMnt composite PPDs produced better rheological properties and performance than identical concentrations of the neat POA. The POA/OMnt composite PPDs can act as wax nucleation sites for wax molecule precipitation and result in larger and more compact wax crystal flocs, which adversely affect the formation of a wax crystal network and, thus, favor the improvement of waxy crude oil rheology.
In some real and up-scale tests using high-level radioactive waste (HLRW), Mg accumulation was observed in smectites at the contact of heated Fe or Cu metal tubes. It is important to understand why Mg accumulated in order to model the long term performance of bentonites in HLRW systems. In some of these tests, an increased number of trioctahedral domains was measured in the smectites using X-ray diffraction (XRD) and infrared spectroscopy (IR). The trioctahedral domains either formed by the dissolution/precipitation of smectites or by the addition of Mg through a solid-state reaction similar to the Hofmann-Klemen effect. The Hofmann-Klemen effect is used in the Greene-Kelly test to distinguish montmorillonites from beidellites. Many studies have been carried out about Li-uptake by smectites, but Mg was rarely taken into account. The present study was, therefore, undertaken to compare the interactions of different bentonites with Li and Mg under various conditions. A significant CEC decrease was found for Li- and Mg-saturated bentonite samples after heating at 250°C under dry conditions. The extent of this CEC reduction depended on the octahedral to tetrahedral charge ratio and was smaller for Mg-saturated samples than Li-saturated samples. This finding proved that it is much more difficult for Mg to enter octahedral vacancies than Li, which probably can be explained by the larger hydration energy and/or slightly larger radius of Mg. The relationship between CEC reduction and the octahedral/tetrahedral charge ratio of both Li- and Mg-saturated samples, however, suggests a similar process. The Mg that can reside at the bottom of the pseudohexagonal holes would not explain this relationship. The important result with respect to understanding HLRW bentonite performance, on the other hand, is that Mg fixation only occurs under dry conditions and that Mg fixation acts as a sink for Mg and, hence, leads Mg to diffuse towards the heated metal surface.
Somen-alkyldiamines with thegeneral formulae H2N(CH2)nNH2 (n = 2–5) were intercalated into the layered silicic acid magadiite, from aqueous solution, causing an increase in the original interlayer distance of 1172 pm. The synthetic magadiite and all intercalated compounds were characterized by elemental analysis, infrared vibrational spectroscopy, X-ray diffractometry, 29Si nuclear magnetic resonance in the solid state, thermogravimetry, scanning electron microscopy, surface area and porosity. The intercalation was followed through a batch-wise method at 298±1 K and gave the maximum amounts 3.70, 2.80, 1.75 and 1.18 mmol g−1, for n varying from 2 to 5, respectively. The well characterized magadiite was calorimetrically titrated in a heterogeneous medium, to obtain the thermodynamic data of intercalation at the solid/liquid interface. Linear correlations were obtained for the number of moles intercalated (Nf), th einterlamellar distance (d) and the specific enthalpy (Δinth) values of the interactive process as a function of the number of C atoms of the aliphatic organic chains (nC) for n-alkyldiamine: Nf = (5.36±0.25) − (0.86±0.07)nC, d = (1406.6±1.9) + (20.9±0.5)nC and Δinth = (5.96±0.25) + (0.06±0.01)nC. The basic N guest atom/silanol acidic center interactions inside the host nanospace gallery gave exothermic enthalpies, positive entropies and negative Gibbs free energy values. This set of data suggests the spontaneity of these intercalation reactions.
The Boom Clay in northern Belgium has been studied intensively over recent decades as a potential host rock in the context of disposal of radioactive waste. One of the parameters of interest is the cation exchange capacity (CEC) as it is related to the sorption potential of radionuclides to the clay host rock. In the past, the CEC was determined using various methods on a limited number of samples, leading to significant variations. To constrain the CEC of the Boom Clay better, a sample set covering the entire stratigraphy was measured using the quick copper(II) triethylenetetramine method. Part of the sample set was also measured using the cobalt(III) hexamine method, as a quality control for the results of the former method. In addition, the exchangeable cation population of the Boom Clay was quantified systematically for the first time and these results were compared to the in situ pore-water chemistry, indicating a strong coupling between the pore-water composition and the exchangeable sites of clay minerals.
Freshwater has become increasingly scarce in many countries. To reduce the consumption of freshwater, the use of saline water resources in industry could provide an opportunity to meet the challenge of water-supply sustainability. However, the presence of electrolytes in saline water causes the coagulation of kaolinite, the colloid stability of which plays a key role in the processing of a number of minerals. Therefore, the dispersion of kaolinite in saline water was studied here. Electrophoretic mobility and colloid stability studies were conducted on a sodium hexametaphosphate-kaolinite system in the presence of NaCl, KCl, CaCl2, and MgCl2, the major electrolytes in saline water resources. The effect of each electrolyte on kaolinite dispersion was studied. Based on the studies of individual electrolytes, a method was developed to disperse kaolinite in 1:1 diluted synthetic seawater with distilled water, which may potentially reduce the consumption of freshwater by 50% when applied in industry.
This paper argues that being there, actually existing, is a notion that cannot be explicated by formal logicians, cannot be defined in terms of conscious perception, and cannot be satisfactorily explained using the theories of mathematics or natural science. So, must we turn to theology to make up for the deficiencies of the methods so far canvassed? The paper concludes by considering the Thomistic identification of God with existence itself, but argues that it would be a mistake to suppose that the mystery of actual existence is thereby dispelled.
The common observation that smaller particle-size fractions of sedimentary rocks yield younger K-Ar apparent ages than the larger particle-size fractions of the same stratigraphic age was analyzed with the aid of the 40Ar/40K ratio from 14 stratigraphically and regionally different sections. Estimation of the loss of radiogenic 40Ar from varied clay-rich size fractions was based on two models: a relationship between particle size and the 40Ar/40K ratio, and a theoretical diffusional loss from spherical particles. The differences between the two models and reconciliation of their results are discussed. For the smallest fractions (up to <0.5 μm), percent-wise losses of 40Ar from the spherical particles model increase from Upper Carboniferous and Permian (38±10%), to Late Triassic (47±10%), and to Miocene and Late Neogene (65±8%). This trend suggests that escape of 40Ar from the smaller particles in older sediments decreased or even stopped after deposition of the sedimentary sections.
The large 40Ar losses derived from small 40Ar/40K ratios in the younger Tertiary sediments, indicate that addition of K to the small fractions is, at least in part, responsible for the young K-Ar apparent ages in geologically different settings. In several 102–103 m thick sections, authigenic illite in the <0.1 to <2 μm fractions yields young K-Ar apparent ages resulting from simultaneous 40Ar production and release during clay authigenesis. In a production and loss model, a first-order escape-rate parameter (e) was estimated at 0.2 × 10−8 to 4 × 10−8 y−1, depending on the K-Ar apparent age of the size fractions and the stratigraphic age of the section. The limitations and uncertainties of the methods of evaluating diagenetic 40Ar losses from fine clay particles are discussed.
Quaternary marine terrace deposits consisting of gravels interbedded with thin sandy gravel layers have been subjected to subaerial weathering. Restricted to the sandy gravel layers, allophane gel either replaced bytownite sands to form a pseudomorph or coated the pebbles. The allophane has an average Al/Si atomic ratio of 1.5 with 45% H2O. The sandy gravels were originally rich in bytownite (av. An86) sands derived from underlying Tertiary basaltic lapilli tuff. The highly soluble and aluminous bytownite favored the formation of allophane. In the sandy gravel layers, pebbles coated with allophane gel were almost fresh whereas those in the gravel layers were highly weathered to form halloysite-rich clays. Allophane gels acted as a somewhat impermeable geochemical barrier impeding a mineral-water reaction in the bytownite-rich sandy gravel layers and thus significantly retarding pebble weathering, while prolonged weathering in the gravel layers resulted in the severe decomposition of pebbles. Bytownite protected the pebbles against weathering, implying that minor soluble minerals might be one of the factors in the natural variation of the weathering rates of rocks and sediments.