To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bentonites are considered suitable backfill material for planned underground nuclear-waste repositories because of an inherent capacity to self-seal and retain contaminants when hydrated. Barrier effectiveness, however, depends on the physical properties of bentonite after placement in a repository site, where hydration state and bulk density can vary. The objective of the present study was to investigate commercial bentonite MX80 hydration rates and mechanisms during water infiltration into dry, moist, and wet samples using the ‘wet-cell’ X-ray diffraction technique. During experimentation, water enters a small flow-through cell and induces swelling within a confined reaction volume, analogous to clay barriers in excavated underground sites. Results demonstrated the importance of using dry, well compacted (>1.4 g/cm3) bentonite, which became saturated slowly (<2.0 ×10−9 m/s) with minimal water in noninterlayer sites (external-surface sites, or within pores). The significant degree of interlayer expansion dominated by the formation of two and eventually three water layers developed as hydration clusters with greater probabilities for the same thickness to lie in adjacent interlayer sites. The relatively thicker particles and the less accessible surface area of hydrated, initially dry bentonite probably resulted in less pore-controlled diffusion, but also less potential radionuclide adsorption by surface complexation. Moist MX80 had the greatest water uptake, the smallest (1.23 g/cm3) dry bulk density, and the greatest proportion of water in pores and on external surfaces. Water that initially accumulated in pore spaces subsequently acted as a reservoir for interlayer hydration and probable gel formation in trapped voids, which is expected to occur in more loosely filled gaps within an excavated repository.
Two varieties of Zn-smectite were synthesized hydrothermally: sauconite, with an ideal composition of Na0.4Zn3(Si3.6Al0.4)O10(OH)2·nH2O; and a Zn equivalent of hectorite, with an ideal composition of Na0.4 (Li0.4Zn2.6)Si4O10(OH)2·nH2O (referred to here as Zn-hectorite). For comparison, hydrothermal synthesis of the related trioctahedral smectites of hectorite, Na0.4(Li0.4Mg2.6)Si4O10(OH)2·nH2O and hectorites containing Cu, Co or Ni in the octahedral sheets instead of Mg were also attempted. The results showed that sauconite, Zn-hectorite and hectorite could be synthesized in the temperature range 100–125°C but hectorites containing Cu, Co or Ni in the octahedral sheet, under the same conditions or even at a temperature of 150°C, could not.
We studied a set of 15 reference clays from The Clay Minerals Society (CMS) Source Clays repository. Our aim was to use them as reference materials in our version of the QUAX mineral database. The QUAX software (Quantitative Phase-Analysis with X-ray Powder Diffraction) has been used successfully at the KTB site (German Continental Deep Drillling) to determine mineral assemblages quickly, in an automatic fashion, on a large number of samples (∼40,000). It was also applied to Quaternary marine sediments of the Japan Sea. Our current research focuses on marine and lacrustrine sediments from the Arctic Ocean and Siberia.
QUAX is a full-pattern method using a reference materials database. The quality of a particular quantification depends on the availability of the relevant mineral phases in the database. Our aim is to extend and improve the database continuously with new data from our current projects, particularly from clay and feldspar minerals.
A reference material in the QUAX software must be monomineralic. Before X-ray diffraction (XRD) patterns of CMS clays could be added to the database, quantification of any impurities was necessary. After measuring the bulk material by XRD, the <2 µm fraction was separated because we assumed it would contain the smallest amount of impurities. Here we present grain-size data, XRD data and X-ray fluorescence (XRF) data for this clay-sized fraction. The results of chemical and mineralogical preparation techniques and (elemental) analysis methods were combined. For XRD, random and oriented clay-aggregate samples as well as pressed pellets for QUAX analysis were prepared. Semi-quantitative clay mineral determinations were run for comparison.
The mineralogical characteristics of Ordovician and Silurian K-bentonites in the Baltic Basin were investigated in order to understand better the diagenetic development of these sediments and to link illitization with the tectonothermal evolution of the Basin. The driving mechanisms of illitization in the Baltic Basin are still not fully understood. The organic material thermal alteration indices are in conflict with the illite content in mixed-layer minerals. The clay fraction of the bentonites is mainly characterized by mixed-layered illite-smectite and kaolinite except in the Upper Ordovician Katian K-bentonites where mixed-layer chlorite-smectite (corrensite) occurs. The variation in expandability plus other geological data suggest that the illitization of Ordovician and Silurian K-bentonites in the Baltic Basin was controlled by a combination of burial and fluid driven processes. The illitization in the south and southwest sectors of the basin was effected mainly by burial processes. The influence of the burial process decreases with decreasing maximum burial towards the central part of the basin. The advanced illitization of the shallowburied succession in the north and northwest sectors of the basin was enhanced by the prolonged flushing of K-rich fluids in relation to the latest phase of development of the Scandinavian Caledonides ≈420–400 Ma.
The present study presents a generalized procedure to accurately identify trioctahedral 1:1 layer silicates. The reciprocal space (RS) sections were obtained by the precession method by “unwarping” frames that were recorded using diffractometers with area detectors or from electron diffraction tomography (EDT) patterns. Distributions of subfamily reflections along the reciprocal lattice rows [21̄l]* / [11l]* / [1̄2l]* in (2hh̄lhex)* / (hhlhex)* / (h̄2hlhex)* RS planes were used to determine OD (Ordered — Disordered) subfamilies (Bailey’s groups A, B, C, D). The distributions along the [10l]* / [01l]* / [1̄1l]* rows in the (h0lhex)* / (0klhex)* / (h̄hlhex) RS planes allow determination of the polytypes. The use of traditional identification diagrams for the determination of OD subfamilies and polytypes was generalized in order to identify monoclinic and orthorhombic MDO (Maximum Degree of Order) polytypes. In these polytypes, the distribution of characteristic reflections along rows is different in RS sections that are perpendicular and diagonal to the symmetry plane of the polytype. The identification diagram of non-MDO polytype 6T2 is also presented. The method was applied to the identification of single crystals of cronstedtite that were synthesized during interactions of Fe metal with a natural claystone during experiments over a temperature range of 90-60°C. Conical and pyramidal crystals with a maximum size of a few micrometers were studied using electron diffraction tomography (EDT). The following polytypes were identified: 1M, 2M1, an apparently ninetuple polytype that was interpreted as triclinic 3A (group A), 1T (group C), and disordered crystals of group D. The 1M polytype was the most abundant. Some 1M crystals were twinned by reticular merohedry with a 120° rotation along the chex axis as the twin operation. The 2M1 occurred as isolated crystals as well as in mixed crystals. Intergrown 1T and 1M polytypes of the C and A group, respectively, were identified in one mixed crystal. The possible stacking sequence and the 3A polytype identification diagram was presented and discussed. Example RS sections of all polytypes were identified and demonstrated.
This article aims to analyze the characteristics of individuals who commit military property theft while their country is at war. For nearly two years, Ukraine has been at war, and for nearly nine years, the country has been living under the regime of an antiterrorist operation, later transitioning to the operation of combined forces. However, some citizens’ attitudes towards military property and its preservation have not changed.
This article examines key issues in characterizing the individual who commits military property theft and bears responsibility for their actions. Emphasis is placed on applied cognition methods and the Ukrainian researchers’ attitudes towards analyzing the typical characteristics of an individual who appropriates military property during wartime. Additionally, the normative-legal framework regulating the actions of subjects (perpetrators) of military theft crime is explored.
It is argued that the specific norm under Ukraine's criminal responsibility law is applied based on the type of crime for which the person will subsequently be held accountable. According to the general rule, only a person who has reached the age of 18 can be considered a military ‘entity’; however, the article challenges this position and suggests alternative possibilities for holding a person accountable based on age. The article also examines holding foreign military personnel accountable, which is particularly relevant for a country in a state of war.
The age and social status of individuals committing military property theft are examined using statistical indicators from the Office of the Prosecutor General from 2018 to 2021, which allowed the tracking of changes in the commissions of specific types of military property theft. These trends are also represented visually in diagrams. The article specifically delves into those individuals who commit administrative offenses involving the misappropriation or unlawful use of military property, which is the subject of special administrative liability under article 172-13 of Ukraine's Administrative Offenses Code. Following that, we present data from our survey of 1,273 respondents. Along with these aspects, the article discusses the matter of complicity between military personnel and civilians and provides court decisions as examples. Finally, the authors recommend expanding the accountability of individuals who misappropriate military property.
Many environmental applications in the inorganic remediation field are based on the swelling and ion-exchange capacities of smectites, even though these can be affected by hydrothermal treatment in water and acidic media. Here a systematic study of the properties of layered silicates that could affect their hydrothermal stability at different pH is described: type of layers, octahedral occupancy, layer charge, and origin of the layer charge. The silicates studied were selected on the basis of their different characteristics associated with these properties. Kanemite (1:0 phyllosilicate), kaolinite (1:1 phyllosilicate), and pyrophyllite and talc (2:1 phyllosilicates with no-layer charge) were examined in order to determine the effect of layer structure, whereas the hydrothermal reactivity of silicates with different layer charge was analyzed by comparing the talc-hectorite-Laponite® and talc-saponite-trioctahedral vermiculite series. Samples were treated hydrothermally at 300ºC for 48 h in pure water and in a 0.01 M HNO3 solution and the final products were analyzed by X-ray diffraction, scanning electronic microscopy, and solid-state nuclear magnetic resonance spectroscopy. All layered silicates, except for kanemite, were found to remain intact after hydrothermal treatment in water and acidic media, with only minimal short-range structural changes observed. The extent of the structural changes depended on the octahedral sheet occupancy (greater extent) and the number of isomorphic substitutions (lesser extent), both of which weaken the structure.
Simple extended constant capacitance surface complexation models have been developed to represent the adsorption of polyaromatic dyes (9-aminoacridine, 3,6-diaminoacridine, azure A and safranin O) to kaolinite, and the competitive adsorption of the dyes with Cd. The formulation of the models was based on data from recent publications, including quantitative adsorption measurements over a range of conditions (varying pH and concentration), acid-base titrations and attenuated total reflectance-Fourier transform infrared spectroscopic data. In the models the dye molecules adsorb as aggregates of three or four, forming outer-sphere complexes with sites on the silica face of kaolinite. Both electrostatic and hydrophobic interactions are implicated in the adsorption processes. Despite their simplicity, the models fit a wide range of experimental data, thereby supporting the underlying hypothesis that the flat, hydrophobic, but slightly charged silica faces of kaolinite facilitate the aggregation and adsorption of the flat, aromatic, cationic dye molecules.
Crystal chemical analysis of various dioctahedral 2:1 phyllosilicates consisting of trans-vacant (tv) and cis-vacant (cv) layers and interstratified cv and tv layers shows that there is compositional control over the distribution of octahedral cations over trans and cis sites. Fe3+ and Mg-rich dioctahedral micas (celadonite, glauconite, leucophyllite and most phengite) occur only as tv varieties. Similarly, the occurrence of tv illites and tv illite fundamental particles in illite-smectite (I-S) does not depend significantly on the cation composition of the 2:1 layers. In contrast, compositional restrictions exist to control the occurrence of pure cv1M illite, which can form only as Fe- and Mg-poor varieties. Similarly, proportions of cv and tv layers in illite fundamental particles depend on the amount of Al in octahedral and tetrahedral sheets of the 2:1 layers.
Simulations of atomic coordinates and interatomic distances for periodic tv1M and cv1M illite structures allow us to reveal the main structural factors that favor the formation of cv layers in illite and I-S. It is shown that in contrast to the tv1M structure, interlayer K in cv1M illite has an environment which is similar to that in 2M1 muscovite. This similarity along with a high octahedral and tetrahedral Al content probably provides stability for cv1M illite in low-temperature natural environments. Because of structural control, the occurrence of monomineral cv1M illite, its association with tv 1M illite, and interstratified cv-tv illite fundamental particles is confined by certain physical and chemical conditions. These varieties are most often formed by hydrothermal activity of different origin. The initial material for their formation should be Al-rich and the hydrothermal fluids should be Mg- and Fe-poor. They occur mostly around ore deposits, in bentonites and in sandstone sedimentary rocks.
The factors governing the formation of tv and cv layers in dioctahedral smectite are probably related to the layer composition and local order-disorder in the distribution of isomorphous octahedral cations, because there is no influence from fixed interlayer cations. In particular, the occurrence of Mg-OH-Mg cation arrangements is more favorable for the formation of cv montmorillonite layers.
The degree of preferred orientation of mineral grains in powder X-ray diffraction (XRD) samples prepared by standard techniques has been evaluated by means of a correction model implemented in the Rietveld program, BGMN. It is demonstrated that neither front- nor side-loading of mineral powders obtained by wet grinding in a McCrone micronizing mill yield powder mounts with randomly oriented particles. Despite fine grinding, the primary sizes and shapes of mineral grains contained in multi-phase samples influence the degree of preferred orientation in XRD powder mounts. Two minerals, both of platy habit, were found to show different degrees of preferred orientation in front- and side-loaded samples. In contrast to these methods of sample preparation, the spray-drying technique yielded perfect randomness of the particles. The experiments on artificial mineral mixtures demonstrate that the model applied can effectively correct for preferred orientation allowing reliable Rietveld quantitative phase analysis of moderately textured samples prepared by standard techniques.
Aflatoxin contamination of diets results in disease and death in humans and animals. The objective of the present paper was to review the development of innovative enterosorption strategies for the detoxification of aflatoxins. NovaSil clay (NS) has been shown to decrease exposures to aflatoxins and prevent aflatoxicosis in a variety of animals when included in their diets. Results have shown that NS clay binds aflatoxins with high affinity and high capacity in the gastrointestinal tract, resulting in a notable reduction in the bioavailability of these toxins without interfering with the utilization of vitamins and other micronutrients. This strategy is already being utilized as a potential remedy for acute aflatoxicosis in animals and as a sustainable intervention via diet. Animal and human studies have confirmed the apparent safety of NS and refined NS clay (with uniform particle size). Studies in Ghanaians at high risk of aflatoxicosis have indicated that NS (at a dose level of 0.25% w/w) is effective at decreasing biomarkers of aflatoxin exposure and does not interfere with levels of serum vitamins A and E, iron, or zinc. A new spinoff of this strategy is the development and use of broad-acting sorbents for the mitigation of environmental chemicals and microbes during natural disasters and emergencies. In summary, enterosorption strategies/therapies based on NS clay are promising for the management of aflatoxins and as sustainable public health interventions. The NS clay remedy is novel, inexpensive, and easily disseminated.
Clay-rich deposits of Upper Cretaceous levels in the Taveiro (Reveles and S. Pedro) and Aveiro (Bustos) regions of west-central Portugal are economically and environmentally important, but detailed chemical and mineralogical characterization is lacking. The purpose of this study was to partially fill that gap by correlating the trace-element geochemistry (particularly the rare earth elements, REE) with the mineralogy of both the whole rock and of the <2 μm fraction along selected stratigraphic levels of the formations. The results will help the ceramics industry in the region and will be important in paleoreconstruction environmental studies.
Mineralogical and chemical characterizations were carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The following clay-mineral associations were identified: (1) at Reveles — smectite, illite, and kaolin minerals; (2) at S. Pedro — kaolin minerals and illite; and (3) at Bustos — illite, kaolin minerals, and mixed-layer illite-smectite. The distribution of trace elements in the <2 μm fraction depended on the clay mineralogy, suggesting that the trace elements were incorporated in, adsorbed to, or even replaced major elements in the clays, as follows: (1) first-row transition elements, particularly Zn and Ga, were enriched when smectite predominated; (2) As, Rb, and Cs were enriched in this fraction of the S. Pedro deposit, the only one with Fe (oxyhydr)oxides and a high proportion of illite; and (3) REE were more concentrated when kaolin minerals predominated. Eu was enriched in the <2 μm fraction, which was due to preferential incorporation in the Fe (oxyhydr)oxides and/or carbonates.
Organic, ionic soil stabilizers (OISS) are designed to regulate directly the hydration properties of clay minerals to improve their engineering behavior. The steps involved in this regulation by OISS are unclear and this might limit their application in the current construction environment in China. The purpose of the present study was to reveal the origin of changes in hydration properties of four typical clay samples (with clay mineral contents of >90 wt.%: Na-bentonite, Ca-bentonite, illite, and kaolinite) as affected by OISS. The water-retention capacity of each clay was measured first through liquid limit and water-vapor adsorption tests. Then, the changes in hydration sites, such as exchangeable cations and the surfaces of minerals, were investigated by a series of microscopic measuring and testing techniques. Finally, infrared spectroscopy (IR) and thermal analysis were performed to verify the regulation of hydration properties by OISS. The results suggested that the exchangeable cation and surface changes controlled the regulation of hydration properties. OISS could cause some of the exchangeable cations to become free ions and disrupt the interaction between some cations and water molecules by its long organic chains; thus, the amount of hydrated cations decreased. In addition, the long organic chains covered the mineral surface and weakened its adsorption capacity. Furthermore, the long chains had cementitious qualities, connecting them to the crystalline layer and resulting in more aggregated clay particles and a smaller specific surface area (SSA). With the decrease in the number of cations and in the SSA by OISS, the hydration of the four clay samples decreased, especially in the case of bentonite.
The adsorption of bovine serum albumin (BSA) protein is important for protein research but remains a great challenge. Here, the hydrothermal method and calcination in a hydrogen-argon mixed atmosphere were used to obtain ordered mono-crystalline magnetic Fe3O4 nanorings with controllable size and uniform structure, which were applied to the adsorption of BSA protein. The results showed that the magnetic Fe3O4 nanorings prepared have the advantages of good crystallinity, controllable morphology, and excellent magnetic response. The Fe3O4 nanorings had an outer diameter of ~160–180 nm, inner diameter of ~80–110 nm, and height of 70 to ~110 nm. The amount of BSA adsorbed by magnetic Fe3O4 nanorings increased with increasing protein concentration; when the concentration of BSA was ~2.75 mg·mL-1 the adsorption amount approached saturation. When the pH value of the solution was ~5, the Fe3O4 nanorings absorption of BSA was greatest. With increasing adsorption time, the amount adsorbed increased gradually. Adsorption equilibrium was reached after 3 h. According to the formula, the saturated adsorption capacity of BSA per gram of magnetic Fe3O4 nanorings was 325.2 mg.
This paper examines, from a Thomistic perspective, the possible consequences of the twentieth-century reform of the ‘Kyrie eleison’ from ninefold set of invocations to a sixfold call-and-response structure. First, we present Aquinas’s distinctly Trinitarian exegesis of the ‘Kyrie’ in light of the history of troped liturgical texts. Next, we will account for the historical diversity of the troped ‘Kyrie’ genre while emphasizing importance of the Trinitarian elements. The third section recounts recent work on Aquinas’s theory of the passions and their effects of language formation; this leads to the fourth section, which casts a philosophical eye on the role of melisma in the liturgy. To conclude this study, we suggest the restoration of some troped ‘Kyrie’ texts in the Roman Rite.
The study of hard rock conversion into fine earths and clayey materials in the pedosphere is important in understanding the relative proportions of recent soil features to features that were inherited from ancient epochs. Cold environments are widely thought to be areas of physical weathering, but the coexistence of physical and chemical processes have also been shown. To further examine mafic rock (dolerite) weathering in soil environments and the conversion into clayey materials, Entic Podzols formed in the cold continental climate were studied. The key study was located in the central part of the flood basalt complex, or traps (traprocks), of the Central Siberian Plateau (Russia). The qualitative mineralogy was studied using X-ray diffraction and the quantitative mineral composition was determined using X-ray diffraction and subsequent Rietveld analysis. The micromorphological characteristics of the soils were studied in thin sections. Dolerite fragments and fine earths were sampled from soil profiles underlain by dolerite. XRD analyses indicated that pyroxene and especially plagioclase contents in the dolerite fragments and fine earths decreased from the bottom to the top soil horizons mostly in the mature soil profiles that were affected by chemical weathering of dolerite. The dioctahedral and trioctahedral smectites in the soils were inherited from a dolerite previously subjected to chemical weathering. The smectite was conserved in the inherited aggregates and protected against dissolution even in acidic soil horizons. Recent pedogenesis processes fractured individual fragments, converted it into soil micromass, and slightly decreased the total smectite content of the <1 µm soil fraction. However, in soil samples collected from the bottom to the top horizons of a mature soil profile, trioctahedral smectite contents decreased as dioctahedral smectite contents increased. This suggests that dioctahedral smectites formed by pedogenic alteration of inherited trioctahedral smectites.
A magnetic composite was prepared by wet-impregnating a powder of a natural zeolite with a magnetic Fe oxide-containing synthetic material. Both starting materials were first characterized with X-ray diffraction, scanning electron microscopy, Mössbauer spectroscopy, and by isoelectric-point using vibrating-sample magnetometry. The synthetic Fe oxide-containing material was characterized as a mixture of magnetite (Fe3O4) and goethite (α-FeOOH). From the Fe Mössbauer analysis, the relative subspectral area for magnetite corresponds to 93(2)%; the remaining spectrum is assignable to goethite. After the impregnation process, magnetite was still identified in the composite material as a magnetic layer surrounding the zeolite particles; no magnetically ordered goethite could be detected. The Mössbauer pattern for this sample indicates a much more complex structure than for the precursor material, based on Fe oxides, with some more altered magnetite and an intense central doublet of (super)paramagnetic Fe3+, probably due to small Fe (hydr)oxides and/or to a residual contribution of Fe-bearing species from the starting zeolite material. The composite preparation procedure also promoted the change of the characteristic A-type zeolite to mordenite. The resulting magnetic composite presented a magnetic coercivity of as much as 0.140 A m−1, at 77 K. The final composite is now being evaluated as an adsorbent: results to date confirm that this novel magnetic material may have applications in the remediation of contaminated water bodies.
Alumina-pillared montmorillonite clays (Al-PILC), prepared under ultrasonic (US) agitation and normal stirring (S) methods, have been used as a host material to encapsulate Co phthalocyanine (CoPc) complex. The amount of Co varies from 0.27 to 1.48 wt.% in the samples, depending on the input concentration of Co. Powder X-ray diffraction and other characterization techniques reveal that the structure of Al-PILC remains intact after the incorporation of the complex into the pores through a pyridine solution of the complex by ultrasonic agitation. A substantial decrease in the BET surface area and total pore volume of Al-PILC points to the occupation of the CoPc moieties within the porous structure of the pillared clay. This is further supported by the observation of a band at 1489 cm−1 in the Fourier transform infrared (FTIR) spectra of the encapsulated samples. The FTIR and diffuse reflectance ultraviolet-visible (DRUV-Vis) spectral results indicate that the encapsulated CoPc complex in the clay matrix undergoes distortion in order to accommodate itself within the pores of the Al-PILC. The encapsulated samples prepared by ultrasonification show better dispersion of the complex than the samples prepared under normal stirring conditions. Compared to the ‘neat’ complex, the encapsulated samples (CoPc in Al-PILC) exhibit greater turnover in the test reaction of the oxidation of benzyl alcohol to benzaldehyde with tertbutyl hydroperoxide as the oxidant at 373 K. The method of preparation and consequent site isolation of CoPc in Al-PILC influence the catalytic activity.