To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The origins of dolocrete and associated palygorskite in the Çanakkale region of Turkey have been little studied, but are of fundamental importance for a more complete understanding of the mineralogy of this region. The present study was undertaken in order to narrow this gap. Siliciclastic red mudstones within alluvial-fan deposits of the Middle Miocene Sariyer Formation locally contain dolocretes in various forms (powdery, nodular, and fracture-filling) and scarce matte-brown, authigenic clay lenses. The mineralogical characteristics of dolocrete and authigenic clay lenses were examined using polarized-light microscopy, X-ray diffraction, differential thermal analysis and thermal gravimetry, scanning-electron microscopy, and infrared spectroscopy, as well as by chemical and isotopic methods. These analyses indicate that the dolocretes are indeed predominantly dolomite, coexisting with variable amounts of palygorskite. The authigenic clay lenses are composed mainly of palygorskite. Dolomite appears as euhedral crystals, whereas palygorskite developed authigenically as interwoven fibers on and between resorbed dolomite crystals, rimming euhedral crystals, and as fiber bundles (where dolomite ± magnesite is absent). The stable-isotope values and some petrographic features, such as alveolar texture and dolomite needles, support a pedogenic origin for the dolocretes. In the initial stage, dolomite formed by replacement of siliciclastic red mudstones and/or by precipitation from percolating soil-derived water in a near-surface setting. Subsequently, palygorskite either precipitated on the dolomite crystals from relatively more evaporative water, replaced the host-rock mudstone in the presence of Al + Fe, or formed directly from solution where the Ca/Mg ratio decreased and the Al + Fe increased. In view of the large Cr and Ni contents of the bulk-rock samples, the elements required for the crystallization of dolomite and palygorskite (namely Mg, Ca, Si, Al, and Fe) may have been supplied by weathering of ophiolitic rocks that crop out in the area.
Mineralogical and thermal characteristics of synthetic Al-, Cr-, Mn-, Ni- and Ti-bearing goethites, synthesized via alkaline hydrolysis of metal-ferrihydrite gels, were investigated by powder X-ray diffraction and differential thermal analysis. Shifts in unit-cell dimensions were consistent with size of substituent metal ions and confirmed the incorporation of Al3+, Cr3+, Mn3+, Ni2+ and Ti4+ in the goethite structure. A weight loss of 6.2 wt.% for goethite containing 12.2 mol.% Ti, being significantly less than for stoichiometric goethite, is consistent with the replacement of Fe by Ti in the goethite structure coupled with the substitution of O2− ions for OH− (i.e. proton loss). These data provide the first confirmation of the direct replacement of Fe by Ti within goethite. Formation of multiple dehydroxylation endotherms for goethite containing 4.5 mol.% Al, 15.3 mol.% Mn and 12.2 mol.% Ti was not attributed to the decomposition of surface OH groups or related simply to the crystallinity of precursor goethite (‘high-a’ vs. ‘low-a’) as defined by the magnitude of a. Instead, endotherm doublet formation was associated with weight loss due to the dehydroxylation of goethite remaining after initial phase transformation to protohematite and to the evolution of OH− associated with the rapid increase in crystallite size of protohematite directed primarily along the a direction. Development of the first endotherm is due to initial dehydroxylation and transformation to protohematite. With continued heating of well ordered goethite or goethite containing moderate to high levels of substituent cations, domain growth along the a direction is delayed or inhibited to a critical point that provides enough thermal energy to enable goethite transformation to proceed to completion and for proto-hematite domain growth to occur. This results in the formation of a second endotherm. For less well ordered goethite and/or goethite containing only low levels of foreign metal cations, protohematite domain growth is not inhibited and proceeds continuously with heating to give only a single endotherm.
Sepiolite is a hydrated magnesium silicate with a microporous and mesoporous structure. The fibrous morphology and the alternating blocks and tunnels along the fiber direction of sepiolite make it an ideal material to sequester a variety of organic and inorganic contaminants. The adsorption of various surfactants by organo sepiolites have been experimentally investigated. How this hydrophobic material adsorbs dye molecules at the atomic level, however, is a great mystery. For this reason, the present study focused on the adsorption of acid azo 57 dye molecules to modified sepiolite. For this purpose, the amenability of sepiolite to remove the anionic textile dye (acid azo red dye 57) was first studied in detail. Additionally, a typical cationic surfactant, hexadecyltrimethylammonium Br (HTAB), was used to modify sepiolite to increase the adsorption capacity. Zeta potential measurements on the sepiolite and the HTAB modified sepiolite were also carried out. Moreover, Density Functional Theory (DFT) studies were performed to understand the mechanism of the adsorption of dye molecules to natural and modified sepiolite surfaces. On the basis of the experimental studies, three general systems were theoretically examined: (i) HTAB molecules on sepiolite basal surfaces to represent four Si tetrahedra, (ii) neutral or charged acid azo red dye 57 molecules on sepiolite basal surfaces to represent four Si tetrahedra, and (iii) HTAB on the surface of neutral or charged acid azo red dye 57 molecules as a substrate. The results clearly indicated good agreement between the experimental studies and the theoretical computational DFT studies. For example, the double layer structure found in experimental studies was also demonstrated in DFT studies and confirmed increased adsorption in the presence of acid azo dye 57.
Clays have traditionally been linked to health care, being used for centuries in the fight against infections and diseases. Similarly, biohybrids produced by combinations of clays and biological species through ‘bottom-up’ approaches have been evaluated over the past decade for biomedical and pharmaceutical uses. These biohybrids show interesting features such as biocompatibility and biodegradability which make them suitable for healthcare applications. The aim of the present communication was to review recent research contributions describing progress and the role of biohybrid materials based on clays in biomedicine and pharmacy disciplines. Emphasis will be on the authors’ own experience of this topic, particularly on aspects related to controlled drug-delivery systems, adjuvants of vaccines, and vectors for non-viral gene transfection. Bionanocomposites offer several advantages for use in the design of new and efficient pharmacological formulations for cutaneous and oral administration. In these systems, the drug is typically entrapped in the clay and protected by a biopolymer matrix, and both components contribute to a gradual release of the drug. Clay-based hybrids have also shown their efficacy in vaccines as they can act as nanocarriers of viral particles, due to the biomimetic interface created on the clay surface after adsorption of suitable biomolecules such as phospholipids, while the clay acts as an adjuvant to increase the efficacy of the vaccine. Finally, a new application of clays as non-viral vectors for controlled gene delivery is attracting increasing interest in the treatment of diverse diseases; clays such as sepiolite have demonstrated their ability to act as nanocarriers of nucleic acids and facilitate their transfection in mammalian cells.
Shales have undergone a complex burial diagenesis that involved a severe modification of the pore structure. Reconstituted shales can provide new insights into the nature of the pore structure in natural materials. The effects of diagenesis on the microfabric, pore size distribution, and porosity of Opalinus shale were measured by comparing the behavior of natural and reconstituted specimens. The parent material (Opalinus shale) was reconstituted through multiple grinding operations, sedimentation from a dispersed slurry, and one-dimensional isothermal consolidation. This process produced uniform specimens that were not cemented and had replicable microfabric and engineering properties. The microfabric and mineralogy of the materials were examined using high-resolution scanning/backscattered electron microscopy (SEM/BSEM) and energy-dispersive X-ray spectroscopy (EDS) for specimens with broken and milled surfaces. Mercury intrusion porosimetry (MIP) and N2 adsorption were used to assess the pore size distributions and specific surface areas of the materials. The microstructure of natural shale was characterized to be highly heterogeneous with significant concentrations of calcareous microfossils, calcite, and quartz particles embedded within the clay matrix. The microfossils were observed to be locally infilled and rimmed by a calcite cement that showed evidence of dissolution. The reconstituted specimens showed a double-structure microfabric that evolved with the level of consolidation stress and converged into a single-structure material (comparable to the natural shale) at a consolidation stress of more than twice the estimated maximum in situ effective stress. The natural shale had a lower specific surface area in comparison to the reconstituted material, which was consolidated at large effective stresses. These differences can be attributed to cementation at a submicron pore scale and highlight chemical diagenesis effects that were not replicated in the reconstituted specimens.
Sorption and fixation of Cs by the upland soils of the US Department of Energy’s Savannah River Site (SRS) have been attributed to micaceous grains consisting mostly of hydroxy-interlayered vermiculite (HIV). Results of experiments to characterize SRS soil samples, to examine aspects of their radiocesium sorption, and to determine how much of their natural Cs is accessible for chemical extraction and isotope dilution are presented in support of mechanistic hypotheses to explain Cs sorption and fixation in HIV grains. The HIV is responsible for most of the soil cation exchange capacity, and concentrations of naturally occurring Cs, Rb, and K in soil samples are closely related to the concentration of HIV. Experiments with 137Cs to examine (1) sorption kinetics, (2) blocking of exchange sites with silver thiourea, and (3) susceptibility of sorbed 137Cs to chemical extraction, support the idea that added Cs is sorbed at different kinds of cation exchange sites in HIV grains. Sites highly selective for Cs but relatively few in number are inferred to exist in interlayer wedge zones within such grains. Little of the naturally occurring Cs in the soil samples was extractable by chemical agents that would remove Cs from ordinary cation-exchange sites and from within non-silicate soil components. Furthermore, most of the natural Cs was inaccessible for isotope dilution under slightly acidic conditions approximating the natural soil environment. These observations support the idea that most of the Cs in these soils has become effectively fixed in the narrower parts of interlayer wedge zones. Control of Cs uptake and fixation by highly Csselective interlayer wedge sites would account for the large distribution coefficients found for 137Cs at the low aqueous Cs concentrations typical of environmental systems and also for the relatively large concentrations of stable Cs in the SRS soils.
The Bracarense ceramics are characterized by a fine, pale yellow paste covered with a brownish yellow slip. The name is derived from Bracara Augusta, the Roman town located in the north of Portugal, where this type of ceramic paste was first found and identified. Various forms with the same type of paste occur, such as imitations of sigillata, terra sigillata and thin walls from the Augustus-Tiberius period, and common ware. Later, similar ceramics were also found in other archeological sites, e.g. Aquis Querquennis (Galiza, Spain), which question the location of the production center of this type of ceramic paste.
Mineralogical and chemical analyses showed that the majority of the Bracarense shards studied differ from the common ware of the Braga region. Despite minor differences, the Bracarense shards collected in Aquis Querquennis have the same geochemical pattern as those found in Bracara Augusta, i.e. they appear to have been manufactured with the same clay type. The firing products found indicate a kaolin character of the source clay, and point to firing temperatures near 900°C. The Aquis Querquennis shards have greater Br contents, which can be explained by use-wear and/or post-depositional processes, as this site is located in a thermal-water region.
The objectives of this study were to investigate the effects of chemical parameters on the characterizationof W-type zeolite crystals and their intergrowths with other types of zeolites. The crystal size and purity ofW-type zeolites are affected significantly by the gel composition with respect to the molar ratios of SiO2/Al2O3 (aluminosilicate module, α), H2O/K2O (alkainity, β), and water content (H2O/SiO2, γ). The effects of these gel parameters ont he synthesis and characterizationof W-type zeolite were investigated.
Crystalline W-type zeolite of high purity was synthesized using a gel with a molar ratio of Al2O3:6.4SiO2:5.6K2O:164.6H2O at T = 165°C for a period of 72 h. The effect of excess K2O/SiO2 ratio ina mono-cation (K)-SiO2-Al2O3 gel-composition system on the nanoparticle size and purity of the product was also investigated. Experiments were carried out using the following levels of alkalinity: 21.4, 29.4, and 51.9; aluminosilicate module: 5.0, 6.4, and 10.0; water content: 16.5, 25.7, and 32.9; and excess K2O/SiO2 ratio: from 0.65 to 3.33. The results showed that by increasing the aluminosilicate module at high K2O/SiO2 ratio, the crystallinity and crystal size of the zeolite synthesized increased, while at low alkalinity, the crystallinity and crystal size decreased. Decreasing alkalinity at low aluminosilicate module increased the crystallinity and decreased the crystal size, while at high aluminosilicate module, both decreased. Finally, by increasing the water content at all aluminosilicate module and alkalinity values, the crystallinity and crystal size of the W-type zeolite increased. Excess K2O/SiO2 ratio was the key factor that should be adjusted int he range 0.7–1.0 for synthesis of pure crystals of W-type zeolite.
The preface of Bill Butler and Elin Schoen's 1979 skating instruction manual, Jammin’, teems with encouragement, but offers one slight warning. Welcoming his first-time skaters, Butler tells the reader, “chances are, once you've roller-discoed, you won't want to stop. You'll want to stay on wheels. And there's no reason why you shouldn't, even if you're not in a rink.” With the tagline “[everything you need to know to get up and boogie down!],” Jammin’ begins with “skating the rail”—a necessary means for first-timers to establish balance, appreciate the tempo of the rink, and learn to control the skates beneath them. Butler then goes on to describe couples skating, group skating, and dancing in place, each of which articulates a relationship to tempo and “the beat,” to the other individuals in the rink, and the contradictions of the rink itself. Jammin’ therefore proposes a practice of emphatic improvisation that is decidedly nonlinear and centers an expressive practice. Jammin’ also cites the logistics and pleasures associated with skating as a community. These logistics and pleasures include everything from “dealing with other people” to “how to become a disco dazzler in one minute flat.” Butler tells us the secret of both is, simply put, to relax.
Acoustic and electroacoustic measurements of particle-size distribution (PSD) and zeta potential (ζ potential), respectively, were used to obtain in situ measures of the effects of suspension concentration and pH on interactions between mixed-charge clays and clay minerals from a highly weathered sediment. Measurements were obtained in concentrated suspensions as a function of weight fraction and as a function of pH during titrations. Standard dispersion and centrifugation methods were used to obtain a comparative measure of PSD. Thermogravimetric analysis and X-ray diffraction patterns were used to obtain semi-quantitative and descriptive analyses, respectively, of the sediment, which is composed of Fe oxide minerals, kaolinite, gibbsite, quartz, crandallite, chlorite and traces of other clay minerals. Acoustic measurements showed that the PSD of the clay fraction varied with suspension concentration, and electroacoustic measurements showed the ‘bulk’ ζ potential increased in absolute value as the suspension concentration decreased. Titration results were also sensitive to suspension concentration. Acoustic measurements indicated that the suspensions became unstable at ∼pH 7.5–8.0, as the attenuation spectra changed character near this pH and the calculated PSD shifted to a larger particle size. This pH value is near the points of zero charge of goethite and gibbsite, as verified by titrations on mineral standards. The results confirm the central role oxide minerals play in regulating clay mineral interactions in highly weathered sediments, and indicate that the average ζ potential of a suspension may be a poor indicator of controls on suspension stability.
This article examines the current state of Ukrainian trademark law to enhance further Ukrainian integration into the European and global intellectual property law systems. Ukraine must be seen as a jurisdiction with a high level of trademark protection, as the momentum has swung in favor of Ukraine's admission to the European Union (EU). It also serves as a case study of a country transitioning from an older, obsolete trademark system to a modern one. The article explores the facets of trademark law, both substantive and procedural, that make up a modern, progressive trademark protection law system. The article uses United States (US) and EU trademark laws as benchmarks to compare the development of Ukraine's law on the subject. It explores recent legislative reforms and existing proposals to enhance trademark protection. Particular attention is paid to the 2020 and 2023 Amendments that recognize trademark dilution as a separate cause of action and provide a more precise delineation of the fair use of a trademark, as well as the modernization of the registration process and actions related to trademark opposition and infringement. Additionally, issues related to the revocation, invalidity, and enforcement of trademarks are analyzed. The article concludes that, when fully implemented, the existing intellectual property reform legislation will improve the efficiency of trademark protection in Ukraine.
Smectite illitization is an important diagenetic phenomenon of mudstones, but only rarely has the influence of organic matter (OM) on this process been examined. In the present study, hydrothermal experiments were conducted with smectite (M1, total organic carbon (TOC) <0.3%) and a smectite and N,N-dimethylhexadecylamine (16DMA) complex (M2, TOC >1%). X-ray diffraction (XRD), infrared, X-ray fluorescence (XRF), and organic carbon analyses were employed to characterize the mineralogy and OM of the samples and the effect of OM on smectite illitization. The XRD patterns showed changes in clay mineral parameters with increased temperature. These changes varied in both M1 and M2 and indicated a difference in the degree of smectite illitization. Moreover, the OM in M2 was mainly adsorbed in smectite interlayers, the OM was largely desorbed/decomposed at temperatures above 350°C, and the OM was the main reason for differences in the degree of smectite illitization between M1 and M2. Bulk mineral composition, elemental content, and infrared absorption band intensities were changed with increased temperature (especially above 350°C). This indicated the formation of new minerals (e.g., ankerite). Overall, OM entered the interlayer space of smectite in M2 and delayed the exchange of K+ by interlayer cations, and thus, suppressed the transformation of smectite to illite and resulted in differences in smectite illitization of M1 and M2. In particular, the formation of CO2 after the decomposition of OM at temperatures above 300°C led to the formation of ankerite in M2. This demonstrated the effect of organic-inorganic interactions on smectite illitization and mineral formation. The disparities in smectite illitization between M1 andM2, therefore, were linked to differences in the mineral formation mechanisms of a water-rock system (M1) and a water-rock-OM system (M2) in natural environments. The insights obtained in the present study should be of high importance in understanding organic-mineral interactions, hydrocarbon generation, and the carbon cycle.
The Bill of Rights Bill was withdrawn on 27 June, signalling what appears to be a major change of policy. After the withdrawal announcement had been made, The Times quoted Dominic Raab as suggesting that ‘All the wrong people will celebrate’ – among whom is your correspondent.
Dioctahedral clays from an active continental geothermal system have been studied to assess their usefulness as proxies of paleo-hydrological and thermal conditions in the subsurface. Drill cuttings from Well WK244 in the Te Mihi area of the Wairakei Geothermal Field, New Zealand, were analyzed to determine the mineralogical, morphological, and isotopic characteristics of hydrothermal clays in these samples. Mixed-layer illite-dioctahedral smectite (I-S) and R0 chlorite-trioctahedral smectite are the main clay minerals, with I-S clays varying downward from R1 to R3 ordering and 50 to >90% illite over 160 m. The proportion of illite in I-S correlates positively with downhole temperature (r = 0.98) and I-S morphology changes from high aspect ratio ribbons, laths, and hairy fibers to pseudo-hexagonal plates with depth. Swelling clay percentages determined using the methylene blue method show a strong positive correlation with %S in I-S (r = 0.91), validating use of methylene blue as a rapid field tool for characterizing the smectite to illite transition in this active geothermal environment. The oxygen isotopic composition of I-S (dd18OI-S) decreases systematically with depth, and mostly reflects a progressive increase in subsurface temperature during clay formation. Estimates of water/rock ratios calculated using δ18OI-S values display stratigraphic variability that corresponds to variations in permeability. Oxygen isotopic measurements of I-S are a useful tool for understanding reservoir and permeability evolution in such geothermal systems and their related fossil analogs.
The intense use of scientific dating over the last three decades makes it possible for the first time reasonably to connect the topographically diverse parts of the Hittite capital Ḫattuša. Not only was the decision to found a city at this site based on pre-Hittite parameters, but at the same time, it also becomes clear that the settlement is one of the very few in Anatolia which was continuously used from the end of the third millennium BC through the second millennium until the beginning of the Iron Age. Furthermore, the accumulation of radiocarbon dates in individual, archaeologically intensively studied areas of the site makes it now possible to understand the development as a dynamic and fluent process. Based on the results outlined here, permanent moves back and forth of the settled areas within a geographically defined space can be reconstructed. The Hittite city of Ḫattuša was always a construction site. Next to densely built-up districts there existed at all times large expanses of either ruins of buildings or of open spaces, which could have been used as pasture or arable land. The settlement’s map, regularly reproduced as its overall plan, thus represents a status reconstructed or idealised by modern research. Most probably the settlement was at no time occupied to this extent, and accordingly never looked like this in its history.