To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Copper(II) triethylenetetramine [Cu(trien)]2+ is an agent suitable for the 1-step determination of the cation exchange capacity (CEC) of many geomaterials using a procedure much less laborious than other, commonly used methods. It is also suitable for the determination of the composition of original exchangeable cations. In contrast to other common ions used for CEC analysis, the Cu(II) complex with triethylenetetramine, [Cu(trien)]2+, is specific for expandable clay minerals. The robustness of [Cu(trien)]2+ analysis was verified using reference clays, ion-exchanged reference clays, sediments, and soils. The [Cu(trien)]2+-based CEC of expandable clay minerals is not influenced significantly by ferrihydrite, goethite, manganite, birnessite, calcite, and gypsum. Birnessite, calcite, and gypsum admixtures affect the composition of the evolved cations. [Cu(trien)]2+ does not recover the entire CEC of soils (but rather that of the clay minerals only) which contain components other than clays which contribute to the CEC, e.g. soil organic matter. In a series of loess with buried paleosols and recent soils the [Cu(trien)]2+-based CEC ranged from 30 to 110% of total CEC obtained by traditional BaCl2 methods. The relative ratio of Ca to Mg, the prevailing exchangeable cations in soils and sediments in exogenic environments, are similar after [Cu(trien)]2+ and conventional BaCl2 treatments. The Ca/Mg ratio in the exchangeable fraction was used successfully for chemostratigraphic correlation of paleolacustrine sediments from a large lake in the Upper Carboniferous basins of eastern equatorial Pangaea and a series of recent flood plain sediments of the meandering Morava River in the Czech Republic. The Ca/Mg ratio obtained by [Cu(trien)]2+ analysis is proposed as a novel tool for the chemostratigraphic correlation of sediment series containing expandable clay minerals.
Waste kaolinite from a fertilizer industry was intercalated with n-methylformamide (NMF) under ambient conditions. The complex was washed, characterized and then reacted with benzamide (dissolved in ethanol) under similar conditions. Using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA), clear evidence of benzamide intercalation was observed after a reaction time of 48 h. The FTIR and DTA analysis also confirmed that the ethanol was not involved in the intercalation and that both NMF and benzamide are present in the interlayer region.
Development of an effective sorbent for diesel fuel spill remediation remains an important challenge in the field of synthesis due to the potential capacity of sorbents to efficiently purify contaminated sites. Fly ash, a coal combustion by-product, was used as a raw material to synthesize two inexpensive zeolites (SZ-1 and SZ-2) for oil spill remediation using an alkali fusion approach prior to hydrothermal treatment. The sorbents were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2 adsorption/desorption. Diesel fuel sorption was used to examine the potential capacity of the synthetic zeolites to sorb oil and other petroleum products. Diesel fuel viscosity and density were determined at room temperature using a viscometer and a pycnometer, respectively. The synthetic zeolites exhibited a higher diesel fuel sorption capacity than fly ash. The SZ-1 zeolite sorbed approximately 1.43 g·g−1 and SZ-2 sorbed approximately 1.9 g·g−1. The sorption was mainly a physical process and mesopore filling seemed to play the dominant role. Sorbent textures were, therefore, vital for the sorption of petroleum products.
Dioctahedral micas are composed of two tetrahedral sheets and one octahedral sheet to form TOT or 2:1 layers. These minerals are widespread and occur with structures differing by (1) the layer stacking mode (polytypes), (2) the location of vacancies among non-equivalent octahedral sites (polymorphs), and (3) the charge-compensating interlayer cation and isomorphic substitutions. The purpose of the present study was to assess the potential of parallel-illumination electron diffraction (ED) to determine the polytype/polymorph of individual crystals of finely divided dioctahedral micas and to image their morphology. ED patterns were calculated along several zone axes close to the c*- and c-axes using the kinematical approximation for trans- and cis-vacant varieties of the four common mica polytypes (1M, 2M1, 2M2, and 3T). When properly oriented, all ED patterns have similar geometry, but differ by their intensity distribution over hk reflections of the zero-order Laue zone. Differences are enhanced for ED patterns calculated along the [001] zone axis. Identification criteria were proposed for polytype/polymorph identification, based on the qualitative distribution of bright and weak reflections. A database of ED patterns calculated along other zone axes was provided in case the optimum [001] orientation could not be found. Various polytype/polymorphs may exhibit similar ED patterns depending on the zone axis considered.
Micron-grade natural vermiculite was modified by several physical and chemical treatments in order to increase the adsorption capacity of this material for B. A thermal exfoliation (T = 600°C) of pristine material, a chemical exfoliation through reaction with hydrogen peroxide (H2O2 35%), or grafting of a specific B complexant (i.e. N-methyl-D-glucamine: NMDG) led to an increase in the uptake of B at low initial concentrations of the aqueous solutions ([B] ≈ 5 mg L−1). The more efficient material is the NMDG-grafted clay, for which the adsorption uptake is four times greater than that of raw vermiculite, and reaches 0.04 mmol g−1. For all modified materials, the effect of the pH on B adsorption and the adsorption kinetics were studied and compared to raw vermiculite. Adsorption isotherms were also plotted and fitted well with the Freundlich equation.
The geochemistry of minerals in intermediate to deep sedimentary rocks (2–10 km depth) is not known sufficiently well to predict accurately the effect of human activities, such as carbon dioxide sequestration or fracking. To carry out real-time experiments, a high-pressure environmental chamber (HPEC) was constructed for in situ X-ray diffraction (XRD) studies to 1000 bars and to 200°C. In the HPEC, a liquid, e.g. a brine, plus sample in suspension, is pressurized by gas, e.g. CH4 or CO2, or liquid, e.g. supercritical CO2. The unique aspect of this chamber is that the sample + liquid (~2 mL) form a dynamic system, and particles can move freely in the liquid while being illuminated by the X-ray beam. Several HPECs were constructed of Ti alloy, stainless steel, or carbon-fiber polyether ketone to be resistant to corrosion under basic or acidic conditions. These HPECs are compatible with standard transmission-mode diffractometers with sealed-tube X-ray sources (Mo radiation is being used at the University of Illinois at Chicago — UIC) or with brilliant X-ray sources. In addition, to allow long-duration studies or, for example, to study the effect of micro-organisms on these mineral reactions, a large-bore (~25 mL) reaction vessel system was devised that could be examined regularly at appropriate P/T conditions or off-line. Calibration of the HPEC and XRD pattern processing is discussed and illustrated. The potential significance of these devices goes beyond understanding the deep sedimentary environment, because materials and reactions can be studied while using nearly any liquid as an immersion agent. As an example, experimental results are given for the d001 values of montmorillonite clay vs. temperatures to 150°C at P(CO2) = 500 bars in a NaCl-rich brine.
Dissolution of amorphous silica or silicate is an important reaction to release silicic acid in natural water and this reaction is affected by several factors. The existence of a natural organic compound, tropolone, because of its abundance, is of particular importance. In the present study, the dissolution of amorphous silica in the presence of tropolone (HL) was investigated in an aqueous solution under acidic conditions. The dissolution is controlled by the reaction between silicic acid and tropolone (Si(OH)4 + 3HL + H+ ⇌ SiL3+ + 4H2O), where the conditional formation constant K = [SiL3+]/[Si(OH)4][HL]3[H+]). The solubility of amorphous silica in the presence of tropolone was significantly greater than that in pure water due to the formation of the Si-tropolonate complex in the solution. The acceleration of silica dissolution by tropolone depends on the reaction pH and tropolone concentration. The solubility of the amorphous silica in the tropolone solution at pH 1 was approximately ten times greater than in the 0.1 mol/dm3 HCl used as a reference. This increase in the solubility correlates to a K value of the Si-tropolone complex at each pH. From the solubility experiments, the conditional formation constants (log K) of the Si-tropolonate complex at each reaction pH 1, 2, and 3 were 6.39, 5.88, and 5.77, respectively. The significant acceleration of the dissolution of amorphous silica by tropolone at pH 1 can be attributed to the large formation constant of the Si-tropolonate complex.
The Hercynian metamorphic event is poorly characterized in internal zone complexes of the Betic Cordillera (Spain), as it has been, to a great extent, overprinted by the mineral assemblages formed during the Alpine event. Identification of the signals of the Hercynian episode is easier in series largely unaffected by the Alpine event, such as Intermediate units between the Maláguide and the Alpujárride Complexes, which consist of a set of thrust slices. With the aim of characterizing the Hercynian paragenesis, a detailed comparison of the mineral assemblages of Paleozoic and overlying Triassic sequences, unaffected by the pre-Alpine event, was carried out. Mineral assemblages were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, electron microprobe, and transmission-analytical electron microscopy. A rapid increase in the illite crystallinity values was observed at the Triassic—Paleozoic transition in the upper tectonic slices. In addition, the diagenetic to anchizonal dickite-, sudoite-, and pyrophyllite-bearing assemblages, characterizing the Triassic rocks, contrast with Paleozoic assemblages consisting of white K-mica ± paragonite + chlorite + mica-chlorite and chlorite-vermiculite mixed layers + garnet, suggesting that this assemblage corresponds to the Hercynian metamorphic event. This assemblage records temperatures on the order of 400ºC and an intermediate pressure regime. Paleozoic rocks contain, in addition, tobelite, which comprises some of the detrital grains and strongly masks the illite crystallinity values. Tobelite has been identified only in the upper thrust slices, suggesting that changes in the detrital input is primarily responsible for the disappearance of tobelite at the transition from the Maláguide to the Alpujárride domain. Tobelite appears finely intergrown with white K-mica and its origin is uncertain. It could have been inherited as tobelite, but a more likely hypothesis is that the intergrowths of white K-mica and tobelite were formed at low temperature from an NH4-bearing mica precursor.
The structures of one synthetic and two natural chlorites of the chlinochlore type were explored using X-ray diffraction, magic-angle spinning nuclear magnetic resonance (NMR) and Mössbauer spectroscopy. Rietveld refinements indicated that all structures are of the trioctahedral ordered IIb polytype. Mössbauer spectra provided the ratio IIFe/IIIFe but gave no evidence for the presence of IIIFe in the brucite-like sheet. We also report unit-cell parameters, Mössbauer isomeric shifts, Si NMR chemical shifts as well as 27Al isotropic shifts and quadrupolar coupling parameters. Very broad 29Si NMR peaks from the natural samples prevented us from obtaining accurate information on the Si-Al ordering in the tetrahedral sheets; the limitations of 29Si NMR as applied to natural chlorites are discussed. High-resolution 3QMAS NMR resolved the 27Al signal of the M4 octahedral site in the brucite-like sheet from the other three Al signals of crystallographically inequivalent octahedral positions.
The structural significance of micas with Na-K intermediate composition, and their chemical and structural evolution at increasing metamorphic grade have been investigated in Triassic rocks from the transition between the Maláguide and Alpujárride complexes (Internal zones of the Betic Cordillera, Spain). Micas were studied by X-ray diffraction (XRD) and by scanning and transmission electron microscopy (SEM/TEM). Three samples, belonging to the late diagenesis and to the low and medium anchizone, were selected for this study. Na-bearing mica appears as submicroscopic packets intergrown in parallel with K-mica, becoming more compositionally uniform with increasing grade. The diagenetic sample contains illite, minor paragonite, and two main populations of intermediate Na-K micas, with average compositions Ms60Prg40 and Ms35Prg65, respectively, where Ms represents muscovite and Prg, paragonite. The lattice-fringe images of mica packets with intermediate compositions suggest the presence of random mixed-layered paragonite-muscovite. Under low anchizonal conditions the amount of discrete paragonite increases and the Na-K intermediate mica has a mean composition of Ms40Prg60. The TEM images suggest that the packets with intermediate composition are solid solutions of paragonite and illite. Micas with Na-K intermediate composition are lacking in the sample with the highest metamorphic grade. In this sample, paragonite and muscovite coexist with mica, with composition intermediate between paragonite and margarite. The lattice-fringe images of these Na-Ca-bearing packets suggest that they consist of irregularly shaped domains enriched either in Na or in Ca.
Our data indicate that Na+K-bearing micas have several origins: detrital stacks of K- and Na-bearing micas coexist with authigenic phases, formed from dickite in the diagenetic, coarse-grained samples, and perhaps from smectite-bearing mixed-layers or detrital illite, in the fine-grained rocks. The changes observed at increasing metamorphic grade can be related to the influence of the lithology, the metamorphic grade, and the different geological settings. Intermediate Na-Ca mica appears to have grown from paragonite, with calcite as the source of Ca.
Dioctahedral smectite samples of a wide range of compositions (beidellites, montmorillonites, nontronites, Fe-rich montmorillonites and Al-rich nontronites) were studied by infrared (IR) spectroscopy. A special sample-preparation technique was used to eliminate the contribution of molecular water. The OH-stretching regions of the spectra were decomposed and curve-fitted, and the individual OH-stretching bands were assigned to all the possible types of OH-bonded cation pairs that involve Al, Mg and Fe. The integrated optical densities of the OH bands were assumed to be proportional to the contents of the specific types of OH-linked cation pairs with the absorption coefficients being the same for all individual OH bands. Good agreement between the samples’ octahedral cation compositions calculated from the IR data and those given by crystal-chemical formulae was obtained for a representative collection of samples in terms of a unique set of individual OH-band positions that vary within narrow wavenumber intervals. This has allowed us to minimize the ambiguity in spectra decomposition caused by the poor resolution of smectite spectra and confirmed the validity of the resulting band identification.
The bands associated with specific OH-bonded cation pairs in the spectra of smectites are, on the whole, shifted to greater wavenumbers with respect to the corresponding bands in micas. In addition to OH bands that refer to the smectite structure, AlOHAl and AlOHFe bands of the pyrophyllite structural fragments were identified. The band-position variation ranges overlap in a few cases (AlOHFe and MgOHMg; AlOHAl of smectite and AlOHFe of pyrophyllite-like component).
Unambiguous interpretation of the OH-stretching vibrations was found to be possible only for smectite samples with known chemical compositions, so that IR data cannot be used for quantitative determination of octahedral cation composition of mixtures of dioctahedral 2:1 phyllosilicates. In the case of the studied monomineral smectites with known chemical compositions, IR data provided information on the short-range order/disorder in the distribution of octahedral cations along cation-OH-cation directions. This information can be employed, in conjunction with the data of other spectroscopic and diffraction techniques, in the analysis of short-range octahedral cation distribution.
Pillared clays (PILCs) with magnetic properties are materials with potential for wide application in industry and the environment, but only a few studies of these types of materials have been carried out. The purpose of this study was to advance knowledge of the preparation and magnetic properties of pillared clays by examining in detail a series of magnetic Ti-pillared clays (Ti-M-PILCs). Samples were synthesized at ambient temperature by sodium borohydride reduction of ferrous ions added by ion-exchange to Ti-pillared montmorillonite (Ti-PILCs). The properties of the Ti-M-PILCs were investigated using a superconducting quantum interference device (SQUID) and Mössbauer spectroscopy. Hysteresis, zero-field-cooled (ZFC), and field-cooled (FC) regimes were measured on different precursor materials prepared by calcination of Ti-PILCs at temperatures between 200 and 600°C. Hysteresis loops, recorded between −7 and 7 T in the temperature range 200–300 K, were observed in most samples depending on the preparation of clays. The ZFC/FC measurements were made after heating from 2 to 300 Kunder an applied magnetic field of 39.8 kA m−1. The influence of the calcination temperature of the starting Ti-PILCs on the structural and magnetic properties of the Ti-M-PILCs was examined. The presence of two different Fe-alloy distributions was found; a dispersed one for the less-calcined Ti-PILCs and clusters for the more-calcined ones.
While there is increasing recognition of the role of race in shaping global politics, the extent to which the construction and operation of international order is entangled with race remains underexplored. In this article, I argue for the centrality of race and racialization in understanding the constitution of international order by theorizing the constitutive connections between race and international order and showing how the two can be examined as intertwined. I do this, first, by articulating conceptualizations of both international order and race that center on processes of regulation and regularization. Second, I bring these together to suggest that race be understood as a form of order that functions to reproduce a historically emergent form of hierarchy and domination across a range of spaces and contexts. Third, I operationalize these conceptualizations by outlining and historicizing some of the key features of this racialized and racializing international order, specifically coloniality, the racial state, and racial capitalism, and thereby illustrate important aspects of the persistence of this order. Centering race in the study of international order, I suggest, helps us better understand how racializing hierarchies and racialized inequalities persist in the present and are reproduced through structures and practices of international order.
‘Liminal’, from the Latin limen, denotes both thresholds and, curiously, the home. Since its original use by the anthropologist Arnold van Gennep in 1909 to label the central stage in a transformational rite of passage, the term has been used in very many contexts: from writings concerning sociology within both local and global contexts to an internet aesthetic of eerie empty spaces, a sort of loose understanding of modern spiritualities and plenty of art gallery labels.