We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An iterated perturbed random walk is a sequence of point processes defined by the birth times of individuals in subsequent generations of a general branching process provided that the birth times of the first generation individuals are given by a perturbed random walk. We prove counterparts of the classical renewal-theoretic results (the elementary renewal theorem, Blackwell’s theorem, and the key renewal theorem) for the number of jth-generation individuals with birth times $\leq t$, when $j,t\to\infty$ and $j(t)={\textrm{o}}\big(t^{2/3}\big)$. According to our terminology, such generations form a subset of the set of intermediate generations.
An infinite convergent sum of independent and identically distributed random variables discounted by a multiplicative random walk is called perpetuity, because of a possible actuarial application. We provide three disjoint groups of sufficient conditions which ensure that the right tail of a perpetuity ℙ{X > x} is asymptotic to axce-bx as x → ∞ for some a, b > 0, and c ∈ ℝ. Our results complement those of Denisov and Zwart (2007). As an auxiliary tool we provide criteria for the finiteness of the one-sided exponential moments of perpetuities. We give several examples in which the distributions of perpetuities are explicitly identified.
We consider a Markov chain (Mn)n≥0 on the set ℕ0 of nonnegative integers which is eventually decreasing, i.e. ℙ{Mn+1<Mn | Mn≥a}=1 for some a∈ℕ and all n≥0. We are interested in the asymptotic behavior of the law of the stopping time T=T(a)≔inf{k∈ℕ0: Mk<a} under ℙn≔ℙ (· | M0=n) as n→∞. Assuming that the decrements of (Mn)n≥0 given M0=n possess a kind of stationarity for large n, we derive sufficient conditions for the convergence in the minimal Lp-distance of ℙn(T−an)∕bn∈·) to some nondegenerate, proper law and give an explicit form of the constants an and bn.
Λ-coalescents model the evolution of a coalescing system in which any number of components randomly sampled from the whole may merge into larger blocks. This survey focuses on related combinatorial constructions and the large-sample behaviour of the functionals which characterize in some way the speed of coalescence.
We show that the total number of collisions in the exchangeable coalescent process driven by the beta (1, b) measure converges in distribution to a 1-stable law, as the initial number of particles goes to ∞. The stable limit law is also shown for the total branch length of the coalescent tree. These results were known previously for the instance b = 1, which corresponds to the Bolthausen-Sznitman coalescent. The approach we take is based on estimating the quality of a renewal approximation to the coalescent in terms of a suitable Wasserstein distance. Application of the method to beta (a, b)-coalescents with 0 < a < 1 leads to a simplified derivation of the known (2 - a)-stable limit. We furthermore derive asymptotic expansions for the moments of the number of collisions and of the total branch length for the beta (1, b)-coalescent by exploiting the method of sequential approximations.
We consider random permutations derived by sampling from stick-breaking partitions of the unit interval. The cycle structure of such a permutation can be associated with the path of a decreasing Markov chain on n integers. Under certain assumptions on the stick-breaking factor we prove a central limit theorem for the logarithm of the order of the permutation, thus extending the classical Erdős–Turán law for the uniform permutations and its generalization for Ewens' permutations associated with sampling from the PD/GEM(θ)-distribution. Our approach is based on using perturbed random walks to obtain the limit laws for the sum of logarithms of the cycle lengths.
We consider the Λ-coalescent processes with a positive frequency of singleton clusters. The class in focus covers, for instance, the beta(a, b)-coalescents with a > 1. We show that some large-sample properties of these processes can be derived by coupling the coalescent with an increasing Lévy process (subordinator), and by exploiting parallels with the theory of regenerative composition structures. In particular, we discuss the limit distributions of the absorption time and the number of collisions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.