We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ice-contact lakes modify glacier geometry and dynamics by shifting the majority of mass loss from the ice surface to the terminus. Lake-terminating glaciers are known to experience greater thinning rates and higher velocities than land-terminating glaciers, but the controls on variability in surface elevation change and ice flow between lake-terminating glaciers in different regions remain poorly explored. We combined existing datasets of glacier velocity, surface elevation change and glacial lake area to characterise the evolution of 352 lake-terminating and land-terminating glaciers within three Himalayan sub-regions between 2000 and 2019. These analyses show that the influence of ice-contact lakes propagates up-glacier across only the lowermost 30% of the hypsometric distribution, even where lakes are well established. We find that ice-contact lakes only affect glacier behaviour when the lakes reach an advanced evolutionary stage; most clearly manifested in the Eastern Himalaya by statistically robust differences in glacier-wide surface elevation change between lake-terminating (–0.68 ± 0.05 m a–1) and land-terminating (–0.54 ± 0.04 m a–1) glaciers. These differences are driven by the presence of a greater number of well-developed ice-contact lakes in the Eastern Himalaya compared to in the Western and Central Himalaya, resulting from greater mass loss rates to date.
The debris that covers the ablation areas of high-elevation debris-covered glaciers contributes to the distinctive features and processes occurring both on and within such glaciers. Despite recent advances, knowledge of the subsurface environments of high-elevation debris-covered glaciers is still extremely limited. In particular, targeted field-based data are needed to parameterise and refine the projections of these glaciers in numerical models. Here, we outline the current understanding of the internal properties of high-elevation debris-covered glaciers based on direct field-based methods and suggest future research directions for field-based studies.
The coronavirus disease 2019 (COVID-19) pandemic highlighted the lack of agreement regarding the definition of aerosol-generating procedures and potential risk to healthcare personnel. We convened a group of Massachusetts healthcare epidemiologists to develop consensus through expert opinion in an area where broader guidance was lacking at the time.
Characterising the structures within glaciers can give unique insight into ice motion processes. On debris-covered glaciers, traditional structural glaciological mapping is challenging because the lower glacier is hidden by the supraglacial debris layer. Here, we use high-resolution optical televiewer (OPTV) image logs from four boreholes drilled into Khumbu Glacier, Nepal, to overcome this limitation and investigate englacial structural features within a Himalayan debris-covered glacier. The OPTV logs show structural features that are up to an order of magnitude thinner than those observed at the glacier surface and reveal five structural units: (I) primary stratification of ice; (II) debris-rich planes that conform with the primary stratification; (III) water-healed crevasse traces; (IV) healed crevasse traces; and (V) steeply dipping planes of basally derived fine sediment near the glacier terminus. The OPTV logs also reveal that the primary stratification both decreases in dip with depth (by up to 56° over 20 m) and rotates with depth (by up to 100° over 20 m) towards parallelism with the proximal lateral moraine. This transformation and the presence of relict layers of basally derived sediment raised into an englacial position – possibly involving thrusting – near the glacier's now stagnant terminus reveal a previously more dynamic glacier regime.
Lake settlements, particularly crannogs, pose several contradictions—visible yet inaccessible, widespread yet geographically restricted, persistent yet vulnerable. To further our understanding, we developed the integrated use of palaeolimnological (scanning XRF, pollen, spores, diatoms, chironomids, Cladocera, microcharcoal, biogenic silica, SEM-EDS, stable-isotopes) and biomolecular (faecal stanols, bile acids, sedaDNA) analyses of crannog cores in south-west Scotland and Ireland. Both can be effective methods sets for revealing occupation chronologies and identifying on-crannog activities and practices. Strong results from sedaDNA and lipid biomarker analyses demonstrate probable on-site animal slaughter, food storage and possible feasting, suggesting multi-period, elite site associations, and the storage and protection of valuable resources.
Rock debris covers ~30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08 to 2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as −40°C m–1 where debris was up to 0.1 m thick, −20°C m–1 for debris 0.1–0.5 m thick, and −4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.
While hot-water drilling is a well-established technique used to access the subsurface of ice masses, drilling into high-elevation (≳ 4000 m a.s.l.) debris-covered glaciers faces specific challenges. First, restricted transport capacity limits individual equipment items to a volume and mass that can be slung by small helicopters. Second, low atmospheric oxygen and pressure reduces the effectiveness of combustion, limiting a system's ability to pump and heat water. Third, thick supraglacial debris, which is both highly uneven and unstable, inhibits direct access to the ice surface, hinders the manoeuvring of equipment and limits secure sites for equipment placement. Fourth, englacial debris can slow the drilling rate such that continued drilling becomes impracticable and/or boreholes deviate substantially from vertical. Because of these challenges, field-based englacial and subglacial data required to calibrate numerical models of high-elevation debris-covered glaciers are scarce or absent. Here, we summarise our experiences of hot-water drilling over two field seasons (2017–2018) at the debris-covered Khumbu Glacier, Nepal, where we melted 27 boreholes up to 192 m length, at elevations between 4900 and 5200 m a.s.l. We describe the drilling equipment and operation, evaluate the effectiveness of our approach and suggest equipment and methodological adaptations for future use.
The impact of a deep-water plunging breaker on a finite height two-dimensional structure with a vertical front face is studied experimentally. The structure is located at a fixed horizontal position relative to a wave maker and the structure’s bottom surface is located at a range of vertical positions close to the undisturbed water surface. Measurements of the water surface profile history and the pressure distribution on the front surface of the structure are performed. As the vertical position, $z_{b}$ (the $z$ axis is positive up and $z=0$ is the mean water level), of the structure’s bottom surface is varied from one experimental run to another, the water surface evolution during impact can be categorized into three classes of behaviour. In class I, with $z_{b}$ in a range of values near $-0.1\unicode[STIX]{x1D706}_{0}$, where $\unicode[STIX]{x1D706}_{0}$ is the nominal wavelength of the breaker, the behaviour of the water surface is similar to the flip-through phenomena first described in studies with shallow water and a structure mounted on the sea bed. In the present work, it is found that the water surface between the front face of the structure and the wave crest is well fitted by arcs of circles with a decreasing radius and downward moving centre as the impact proceeds. A spatially and temporally localized high-pressure region was found on the impact surface of the structure and existing theory is used to explore the physics of this phenomenon. In class II, with $z_{b}$ in a range of values near the mean water level, the bottom of the structure exits and re-enters the water phase at least once during the impact process. These air–water transitions generate large-amplitude ripple packets that propagate to the wave crest and modify its behaviour significantly. At $z_{b}=0$, all sensors submerged during the impact record a nearly in-phase high-frequency pressure oscillation indicating possible air entrainment. In class III, with $z_{b}$ in a range of values near $0.03\unicode[STIX]{x1D706}_{0}$, the bottom of the structure remains in air before the main crest hits the bottom corner of the structure. The subsequent free surface behaviour is strongly influenced by the instantaneous momentum of the local flow just before impact and the highest wall pressures of all experimental conditions are found.
Measurements of glacier ice cliff evolution are sparse, but where they do exist, they indicate that such areas of exposed ice contribute a disproportionate amount of melt to the glacier ablation budget. We used Structure from Motion photogrammetry with Multi-View Stereo to derive 3-D point clouds for nine ice cliffs on Khumbu Glacier, Nepal (in November 2015, May 2016 and October 2016). By differencing these clouds, we could quantify the magnitude, seasonality and spatial variability of ice cliff retreat. Mean retreat rates of 0.30–1.49 cm d−1 were observed during the winter interval (November 2015–May 2016) and 0.74–5.18 cm d−1 were observed during the summer (May 2016–October 2016). Four ice cliffs, which all featured supraglacial ponds, persisted over the full study period. In contrast, ice cliffs without a pond or with a steep back-slope degraded over the same period. The rate of thermo-erosional undercutting was over double that of subaerial retreat. Overall, 3-D topographic differencing allowed an improved process-based understanding of cliff evolution and cliff-pond coupling, which will become increasingly important for monitoring and modelling the evolution of thinning debris-covered glaciers.
In January 2014, a chemical spill of 4-methylcyclohexanemethanol and propylene glycol phenyl ethers contaminated the potable water supply of approximately 300,000 West Virginia residents. To understand the spill’s impact on hospital operations, we surveyed representatives from 10 hospitals in the affected area during January 2014. We found that the spill-related loss of potable water affected many aspects of hospital patient care (eg, surgery, endoscopy, hemodialysis, and infection control of Clostridium difficile). Hospital emergency preparedness planning could be enhanced by specifying alternative sources of potable water sufficient for hemodialysis, C. difficile infection control, and hospital processing and cleaning needs (in addition to drinking water). (Disaster Med Public Health Preparedness. 2017;11:621–624)
The objective of this investigation was to examine the health impact of and medical response to a mass casualty chemical incident caused by a vinyl chloride release.
Methods
Key staff at area hospitals were interviewed about communication during the response, the number of patients treated and care required, and lessons learned. Clinical information related to the incident and medical history were abstracted from hospital charts.
Results
Hospital interviews identified a desire for more thorough and timely incident-specific information and an under-utilization of regionally available resources. Two hundred fifty-six hospital visits (96.2%) were at the facility closest to the site of the derailment. Of 237 initial visits at which the patient was examined by a physician, 231 patients (97.5%) were treated in the emergency department (ED) and 6 patients (2.5%) were admitted; 5 admitted patients (83.3%) had preexisting medical conditions. Thirteen of 14 asymptomatic ED patients were children under the age of 10 years. One hundred forty-five patients (62.8%) discharged from the ED were diagnosed solely with exposure to vinyl chloride.
Conclusions
Continuous emergency response planning might facilitate communication and better distribution of patient surge across hospitals. Individuals with multiple medical conditions and parents and caretakers of children may serve as target groups for risk communication following acute chemical releases. (Disaster Med Public Health Preparedness. 2017;11:538–544)
A chlorine gas release occurred at a poultry processing plant as a result of an accidental mixing of sodium hypochlorite and an acidic antimicrobial treatment. We evaluated the public health and emergency medical services response and developed and disseminated public health recommendations to limit the impact of future incidents.
Methods
We conducted key informant interviews with the state health department; local fire, emergency medical services, and police departments; county emergency management; and representatives from area hospitals to understand the response mechanisms employed for this incident.
Results
After being exposed to an estimated 40-pound chlorine gas release, 170 workers were triaged on the scene and sent to 5 area hospitals. Each hospital redistributed staff or called in extra staff (eg, physicians, nurses, and respiratory therapists) in response to the event. Interviews with hospital staff emphasized the need for improved communication with responders at the scene of a chemical incident.
Conclusions
While responding, hospitals handled the patient surge without outside assistance because of effective planning, training, and drilling. The investigation highlighted that greater interagency communication can play an important role in ensuring that chemical incident patients are managed and treated in a timely manner. (Disaster Med Public Health Preparedness. 2016;10:553–556)
When a large chemical incident occurs and people are injured, public health agencies need to be able to provide guidance and respond to questions from the public, the media, and public officials. Because of this urgent need for information to support appropriate public health action, the Agency for Toxic Substances and Disease Registry (ATSDR) of the US Department of Health and Human Services has developed the Assessment of Chemical Exposures (ACE) Toolkit. The ACE Toolkit, available on the ATSDR website, offers materials including surveys, consent forms, databases, and training materials that state and local health personnel can use to rapidly conduct an epidemiologic investigation after a large-scale acute chemical release. All materials are readily adaptable to the many different chemical incident scenarios that may occur and the data needs of the responding agency. An expert ACE team is available to provide technical assistance on site or remotely. (Disaster Med Public Health Preparedness. 2016;10:631–632)
Obesity is a substantial health problem in the United States, and is associated with many chronic diseases. Previous studies have linked poor dietary habits to obesity. This cross-sectional study aimed to identify the association between body mass index (BMI) and fast-food consumption among 669 same-sex adult twin pairs residing in the Puget Sound region around Seattle, Washington. We calculated twin-pair correlations for BMI and fast-food consumption. We next regressed BMI on fast-food consumption using generalized estimating equations (GEE), and finally estimated the within-pair difference in BMI associated with a difference in fast-food consumption, which controls for all potential genetic and environment characteristics shared between twins within a pair. Twin-pair correlations for fast-food consumption were similar for identical (monozygotic; MZ) and fraternal (dizygotic; DZ) twins, but were substantially higher in MZ than DZ twins for BMI. In the unadjusted GEE model, greater fast-food consumption was associated with larger BMI. For twin pairs overall, and for MZ twins, there was no association between within-pair differences in fast-food consumption and BMI in any model. In contrast, there was a significant association between within-pair differences in fast-food consumption and BMI among DZ twins, suggesting that genetic factors play a role in the observed association. Thus, although variance in fast-food consumption itself is largely driven by environmental factors, the overall association between this specific eating behavior and BMI is largely due to genetic factors.
This chapter concentrates on health and well-being, drawing on 11 New Dynamics of Ageing (NDA) projects covering the whole range, from basic biology to the arts and humanities. Our main purpose is to employ the findings from our projects to examine the barriers to healthy ageing and how to overcome them. By way of introduction to this discussion of healthy ageing we first consider some key concepts in this field: ageing and ill health, older age, quality of life and subjective well-being. We begin with an overview of the main demographic changes that underline the importance of research on healthy ageing.
Key concepts for healthy ageing
Demographic changes
Major demographic shifts are currently under way in countries of the developed world such as the UK. In the 25-year period from 1985 to 2010 the number of adults aged over 65 in the UK increased by 1.7 million, and the number of those aged over 85 almost doubled to 1.4 million (ONS, 2011a). This is partly due to improvements in mortality leading to higher numbers in old age. Life expectancy is increasing at a rate of two years per decade in developed societies. However, there are sharply divergent views about how trends in life expectancy may develop during this century. For example, Christensen et al (2009, p 1196) pointed out, ‘if the pace of increase in life expectancy in developed countries over the past two centuries continues through the 21st century, most babies born since 2000 … [in] countries with long life expectancies will celebrate their 100th birthdays … research suggests that ageing processes are modifiable and that people are living longer without severe disability.’ On the other hand, Olshansky et al (2005, p 1142) stated, ‘as a result of the substantial rise in the prevalence of obesity and its life-shortening complications such as diabetes, life expectancy at birth and at older ages could level off or even decline within the first half of this century’.
The magnitude and implications of population ageing depend heavily on the magnitude of mortality improvement in decades to come. At present, overall age-standardised mortality rates (both sexes combined) are improving at about 2.5 per cent per annum in the UK (based on ONS, 2012a), but current trends are heavily influenced by patterns at ages where deaths are concentrated.
It is unknown whether there are racial differences in the heritability of major depressive disorder (MDD) because most psychiatric genetic studies have been conducted in samples comprised largely of white non-Hispanics. To examine potential differences between African-American (AA) and European-American (EA) young adult women in (1) Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) MDD prevalence, symptomatology, and risk factors, and (2) genetic and/or environmental liability to MDD, we analyzed data from a large population-representative sample of twins ascertained from birth records (n = 550 AA and n = 3226 EA female twins) aged 18–28 years at the time of MDD assessment by semi-structured psychiatric interview. AA women were more likely to have MDD risk factors; however, there were no significant differences in lifetime MDD prevalence between AA and EA women after adjusting for covariates (odds ratio = 0.88, 95% confidence interval [CI]: 0.67–1.15). Most MDD risk factors identified among AA women were also associated with MDD at similar magnitudes among EA women. Although the MDD heritability point estimate was higher among AA women than EA women in a model with paths estimated separately by race (56%, 95% CI: 29–78% vs. 41%, 95% CI: 29–52%), the best fitting model was one in which additive genetic and non-shared environmental paths for AA and EA women were constrained to be equal (A = 43%, 33–53% and E = 57%, 47–67%). In spite of a marked elevation in the prevalence of environmental risk exposures related to MDD among AA women, there were no significant differences in lifetime prevalence or heritability of MDD between AA and EA young women.