We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A numerical study is presented on flow-induced vibration of a circular cylinder, under the effect of a downstream stationary cylinder-induced proximity interference. The interference-induced various types of gap-flow regimes and characteristics of vibration and gap-flow rate $Q^*_g$ are presented, by considering various non-dimensional gaps $G^* = 0.1{-}2.5$ and reduced velocities $U^* = 3{-}20$ at a constant Reynolds number $Re = 100$, mass ratio $m^*= 2$ and damping ratio $\zeta = 0.005$. Decreasing $G^*$ or increasing proximity leads to the four gap-flow regimes: bi-directional gap flow at $G^* \geqslant 1.0$, uni-directional non-orthogonal gap flow at $G^* = 1.5{-}1.0$, uni-directional orthogonal gap flow at $G^* \leqslant 0.5$ and uni-directional one-sided gap flow at $G^* \leqslant 0.3$. Further, the respective regimes at larger $U^*$ are associated with proximity-induced modified vortex-induced vibration (PImVIV), proximity-induced galloping (PIG), transitional PImVIV–PIG, and proximity-induced staggered vibration (PISV). Quantitative presentation of maximum gap-flow rate $Q^*_{{g,max}}$, phase $ \phi _g$ (between $Q^*_{g}$ and displacement $y^*$) and phase portraits ($Q^*_{g}$ versus $y^*$) provides clear demarcation between the various gap-flow regimes. Flow mechanisms are presented for the PImVIV, PIG and PISV responses. For the PIG, the mechanism is presented for the first time on generation of galloping instability, asymptotically increasing $A^*$ and existence of optimum gap $G^* = 0.5$ for the maximum amplitude. This work is significant as it provides new insights into the proximity interference-induced gap-flow dynamics between two cylinders, associated flow mechanism for both vibration mitigation and enhancement and promising potential applications for energy harvesting.
Recent disruption of medical oxygen during the second wave of coronavirus disease 2019 (COVID-19) has caused nationwide panic. This study attempts to objectively analyze the medical oxygen supply chain in India along the principles of value stream mapping (VSM), identify bottlenecks, and recommend systemic improvements.
Methods:
Process mapping of the medical oxygen supply chain in India was done. Different licenses and approvals, their conditions, compliances, renewals, among others were factored in. All relevant circulars (Government Notices), official orders, amendments, and gazette notifications pertaining to medical oxygen from April 2020 to April 2021 were studied and corroborated with information from Petroleum and Explosives Safety Organization (PESO) official website.
Results:
Steps of medical oxygen supply chain right from oxygen manufacture to filling, storage, and transport up to the end users; have regulatory bottlenecks. Consequently, flow of materials is sluggish and very poor information flow has aggravated the inherent inefficiencies of the system. Government of India has been loosening regulatory norms at every stage to alleviate the crisis.
Conclusions:
Regulatory bottlenecks have indirectly fueled the informal sector over the years, which is not under Government’s control with difficulty in controlling black-marketing and hoarding. Technology enabled, data-driven regulatory processes with minimum discretionary human interface can make the system more resilient.
The phenomena of microlayer formation and its dynamic characteristics during the nucleate pool boiling regime have been widely investigated in the past. However, experimental works on real-time microlayer dynamics during nucleate flow boiling conditions are highly scarce. The present work is an attempt to address this lacuna and is concerned with developing a fundamental understanding of microlayer dynamics during the growth process of a single vapour bubble under nucleate flow boiling conditions. Boiling experiments have been conducted under subcooled conditions in a vertical rectangular channel with water as the working fluid. Thin-film interferometry combined with high-speed cinematography have been adopted to simultaneously capture the dynamic behaviour of the microlayer along with the bubble growth process. Transients associated with the microlayer have been recorded in the form of interferometric fringe patterns, which clearly reveal the evolution of the microlayer beneath the growing vapour bubble, the movement of the triple contact line and the growth of the dryspot region during the bubble growth process. While symmetric growth of the microlayer was confirmed in the early growth phase, the bulk flow-induced bubble deformation rendered asymmetry to its profile during the later stages of the bubble growth process. The recorded fringe patterns have been quantitatively analysed to obtain microlayer thickness profiles at different stages of the bubble growth process. For Re = 3600, the maximum thickness of the almost wedge-shaped microlayer was obtained as δ ~ 3.5 μm for a vapour bubble of diameter 1.6 mm. Similarly, for Re = 6000, a maximum microlayer thickness of δ ~ 2.5 μm was obtained for a bubble of diameter 1.1 mm.
Solidifying ternary systems can exhibit complex natural convection phenomena, particularly due to the presence of two porous zones (cotectic and primary mush), and the rejection of two differently dense solutes. The primary objectives of this study are to investigate the following: (i) the natural convection patterns in various compositional regimes of a typical ternary system, and (ii) the role of the combined existence of the microstructure (facets and dendrites) in the porous zone on natural convection, with a motivation to enhance the current understanding of the microstructure–convection relationships. A ternary mixture is chosen such that different compositions of the three primary solidifying components lead to the formation of distinct ice, dendritic and faceted solid structures that cover the complete span of microstructure–convection relationships. The observations of flow in different compositional regimes show convection occurring in the form of plumes, random mixing and double-diffusive layering, as well as combinations of these, which are governed by the type of coexisting microstructures. The study reveals the occurrence of Rayleigh–Taylor instability with varying amounts of the heavier component. The bulk liquid composition showed a tendency to cross the cotectic line, and thus also change the nature of primary solidifying structure from faceted to dendritic in cases where facets and dendrites were present in cotectic mush, and facets in primary mush. These insights are believed to elucidate the complex mechanisms of ternary solidification, as well as provide important real-time data for direct numerical simulations.
In this study, identical experiments of bottom-cooled solidification fluidic mixtures that exhibit faceted and dendritic microstructures were performed. The strength of compositional convection, created due to the rejection of a lighter solute, was correlated with the solidifying microstructure morphology via separate Rayleigh numbers in the mushy and bulk-fluid zones. While the bulk fluid in dendritic solidification experienced a monotonic decrease in the temperature, solidification of the faceted case revealed an unconventional, anomalous temperature rise in the bulk liquid after the formation of a eutectic solid. Based on the bulk-liquid temperatures, three distinct regimes of heat transfer were observed in the liquid, namely, convection-dominated, transition and conduction-dominated. The observations were analysed and verified with the help of different initial compositions and cooling conditions, as well as other mixtures that form faceted morphology upon freezing. The observed temperature rise was further ascertained by performing an energy balance in an indicative control volume ahead of the solid–liquid interface. The plausible mechanism of permeability-driven flow causing a gain in the temperature of the liquid during freezing was generalized with the help of a semi-analytical investigation of a one-dimensional system comprising solid, porous mush and liquid regions. The analytical scaling relations for fluid velocity and vorticity, for the faceted and dentritic cases, revealed contrasting vorticity values, which are much larger in low permeability (faceted case) and cause enhanced mixing in the bulk. The study sheds new insights into the role of microstructural morphology in governing the transport phenomena in the bulk liquid.
Synthetic cationic polymer-mediated synthesis of silver nanoparticles and selective antimicrobial activity of the same were demonstrated. Polyethyleneimine (PEI)-coated silver nanoparticles showed antimicrobial activity against Acinetobacter baumannii as a function of the polymeric molecular weight (MW) of PEI. Silver nanoparticles were coated with PEI of three different MWs: Ag-NP-1 with PEI exhibiting a MW of 750,000, Ag-NP-2 with PEI exhibiting a MW of 1300, and Ag-NP-3 with PEI exhibiting a MW of 60,000. These nanoparticles showed a particle size distribution of 4–20 nm. The nanoparticles exhibited potent antimicrobial activity against A. baumannii, with the minimum inhibitory concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 5, 10, and 5 μg/mL, respectively, and minimum bactericidal concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 10, 20, and 10 μg/mL, respectively. Fluorescence imaging of Ag-NPs revealed selective transfusion of Ag-NPs across the cell membrane as a function of the polymeric MW; differential interaction of the cytoplasmic proteins during antimicrobial activity was observed.
Knowledge of bio-physicochemical variables is essential to better understand the functioning of tropical marine ecosystems, which are rich in biodiversity and provide nutrition and livelihoods to billions of people in the developing countries. This study analysed the spatial and temporal variability of phytoplankton and zooplankton with chlorophyll, primary productivity, temperature, salinity, oxygen and nutrients in the Bay of Bengal (BoB), collecting data from the World Ocean, and COPEPOD and Aqua MODIS records. The results indicated a strong gradient in bio-physicochemical conditions of the BoB, from the coast to the open sea. Specifically, the spatial variability in chlorophyll was negatively correlated (R2 = 0.59) with temperature and zooplankton, while a positive correlation (R2 = 0.70) was noted between chlorophyll and silicate, nitrate, phosphate, dissolved oxygen and salinity. All the variables exhibited a strong vertical gradient at depths up to 500 m. Temperature, nutrients, zooplankton and to a lesser extent salinity and rainfall had an influence on the annual abundance of phytoplankton. Over the long term, a significant positive trend in temperature and a significant negative trend in primary productivity were observed in the BoB. The findings of this study will be useful to draw insights on the state of fisheries habitats and the overall environmental conditions of the BoB in response to future climate changes.
A comprehensive study of the generalized Lambert series $\sum _{n=1}^{\infty }\frac{n^{N-2h}\text{exp}(-an^{N}x)}{1-\text{exp}(-n^{N}x)},0<a\leqslant 1,~x>0$, $N\in \mathbb{N}$ and $h\in \mathbb{Z}$, is undertaken. Several new transformations of this series are derived using a deep result on Raabe’s cosine transform that we obtain here. Three of these transformations lead to two-parameter generalizations of Ramanujan’s famous formula for $\unicode[STIX]{x1D701}(2m+1)$ for $m>0$, the transformation formula for the logarithm of the Dedekind eta function and Wigert’s formula for $\unicode[STIX]{x1D701}(1/N),N$ even. Numerous important special cases of our transformations are derived, for example, a result generalizing the modular relation between the Eisenstein series $E_{2}(z)$ and $E_{2}(-1/z)$. An identity relating $\unicode[STIX]{x1D701}(2N+1),\unicode[STIX]{x1D701}(4N+1),\ldots ,\unicode[STIX]{x1D701}(2Nm+1)$ is obtained for $N$ odd and $m\in \mathbb{N}$. In particular, this gives a beautiful relation between $\unicode[STIX]{x1D701}(3),\unicode[STIX]{x1D701}(5),\unicode[STIX]{x1D701}(7),\unicode[STIX]{x1D701}(9)$ and $\unicode[STIX]{x1D701}(11)$. New results involving infinite series of hyperbolic functions with $n^{2}$ in their arguments, which are analogous to those of Ramanujan and Klusch, are obtained.
To evaluate the incidence of surgical site infection (SSI) in a cohort of pancreas transplant recipients and assess predisposing risk factors for SSI
Design
Retrospective cohort study
Setting
Single transplant center in Canada
Patients
Patients who underwent any simultaneous pancreas and kidney (SPK) or pancreas after kidney (PAK) transplant procedures between January 2000 and December 2015
Methods
In this retrospective cohort evaluation of SPK or PAK recipients, we assessed the incidence of SSI and risk factors associated with superficial, deep, and organ/space SSI. Multivariate logistic regression was used to identify independent risk factors for SSI in SPK and PAK recipients.
Results
In total, 445 adult transplant recipients were enrolled. The median age of these patients was 51 years (range, 19–71 years), and 64.9% were men. SSIs were documented in 108 patients (24.3%). Organ/space SSIs predominated (59 patients, 54.6%), followed by superficial SSIs (47 patients, 43.5%) and deep SSIs (3 patients, 2.8%). Factors predictive of SSIs in the multivariate analysis were cold pancreas ischemic time (odds ratio [OR], 1.002; P=.019) and SPK transplant (compared to PAK transplant recipients; OR, 2.38; P=.038). Patients with SSIs developed graft loss more frequently (OR, 16.99; P<.001).
Conclusions
Organ/space SSIs remain a serious and common complication after SPK and PAK. Prolonged cold ischemic time and SPK transplant were the risk factors predictive of SSIs. Appropriate perioperative prophylaxis in high-risk patients targeting the potential pathogens producing SSIs in kidney and/or pancreas transplant recipients and a reduction in cold ischemia may prove beneficial in reducing these SSIs.
The Murshidabad District of West Bengal, India has practised traditional mulberry sericulture since time immemorial. One of the most important aspects for sustainable development of the sericulture industry is the control and prevention of silkworm diseases. The main objective of this study was to determine silkworm disease incidence over the period 1992–2011 in Murshidabad District and how environmental factors have contributed towards their occurrence. Data were collected from a crop-wise survey of silkworm diseases from 25 farmers (five farmers from five villages), who each had a separate rearing house, were progressive and had a capacity of rearing at least 100 disease free layings (dfls) in each crop. Disease incidence was expressed in percentage and calculated taking into consideration 40,000 larvae per 100 dfls. Crop-wise silkworm disease mortality data were correlated with meteorological data. Data collected from the continuous survey conducted in the district during 1992–2011 revealed that there was no set pattern of occurrence of silkworm diseases. However, maximum mortality (up to 30%) of silkworm due to diseases in all the seasons occurred mainly due to grasserie, as relative humidity remains high for most part of the year in this area. However, other than grasserie, for most of the period, disease incidence was below 10%. This observation of the dominance of grasserie over other diseases in causing silkworm mortality calls for renewed emphasis on the preventive measures and development of disease forecasting models, for disease control. Another observation was that since 1993, pebrine, the deadliest disease of the silkworm, has not been reported from the farmers’ fields.
Pebrine caused by Nosema bombycis in the silkworm Bombyx mori L. causes severe economic loss to the sericulture industry. Several species of microsporidia and strains of N. bombycis have been isolated from infected silkworms. The study of the developmental stages of any parasite is important, as it leads to the identification of stages that may be susceptible to control measures. For this study, five microsporidian isolates from B. mori were collected from five different locations in West Bengal, India and a study of the developmental stages from mid-gut smears and histological techniques was undertaken. The observations of mid-gut smears and histological specimens revealed differences in the morphometry and duration of different developmental stages of the parasites.
Increasing prevalence of childhood obesity calls for comprehensive and cost-effective educative measures in developing countries such as India. School-based educative programmes greatly influence children's behaviour towards healthy living. We aimed to evaluate the impact of a school-based health and nutritional education programme on knowledge and behaviour of urban Asian Indian school children. Benchmark assessment of parents and teachers was also done. We educated 40 196 children (aged 8–18 years), 25 000 parents and 1500 teachers about health, nutrition, physical activity, non-communicable diseases and healthy cooking practices in three cities of North India. A pre-tested questionnaire was used to assess randomly selected 3128 children, 2241 parents and 841 teachers before intervention and 2329 children after intervention. Low baseline knowledge and behaviour scores were reported in 75–94 % government and 48–78 % private school children, across all age groups. A small proportion of government school children gave correct answers about protein (14–17 %), carbohydrates (25–27 %) and saturated fats (18–32 %). Private school children, parents and teachers performed significantly better than government school subjects (P < 0·05). Following the intervention, scores improved in all children irrespective of the type of school (P < 0·001). A significantly higher improvement was observed in younger children (aged 8–11 years) as compared with those aged 12–18 years, in females compared with males and in government schools compared with private schools (P < 0·05 for all). Major gaps exist in health and nutrition-related knowledge and behaviour of urban Asian Indian children, parents and teachers. This successful and comprehensive educative intervention could be incorporated in future school-based health and nutritional education programmes.
In this paper, the low-Reynolds number (Re = 80) flow around a row of nine square cylinders placed normal to the oncoming flow is investigated using the lattice-Boltzmann method. The effects of the cylinder spacing on the flow are studied for spacing to diameter ratios of 0.3 to 12. No significant interaction between the wakes is observed with spacings greater than six times the diameter. At smaller spacings, the flow regimes as revealed by vorticity field and drag coefficient signal are: synchronized, quasi-periodic and chaotic. These regimes are shown to result from the interaction between primary (vortex shedding) and secondary (cylinder interaction) frequencies; the strength of the latter frequency in turn depends on the cylinder spacing. The secondary frequency is also related to transition between narrow and wide wakes behind a cylinder.
The mean drag coefficient and Strouhal number are found to increase rapidly with a decrease in spacing; correlations of these parameters with spacing are proposed. The Strouhal number based on gap velocity becomes approximately constant for a large range of spacings, highlighting the significance of gap velocity for this class of flows. It is also possible to analyse the vortex pattern in the synchronized and quasi-periodic regimes with the help of vorticity dynamics. These results, most of which have been obtained for the first time, are of fundamental significance.
In this paper, the effect of a relativistically intense Gaussian laser pulse, on the propagation of electron plasma wave is studied. The nonlinear effects considered here are the relativistic decrease of the plasma frequency and the ponderomotive expelling of the electrons. Modified coupled equations for laser and electron plasma wave are derived from fluid equations. These coupled equations are solved analytically and numerically to study the laser intensity in the plasma and the variation of amplitude of the excited electron plasma wave. It is seen that the effect of including the ponderomotive nonlinearity is significant on the excitation of plasma wave. This should affect the number of energetic electrons and their energy range on account of wave particle interaction.
Fluorinated silicon oxide films were prepared in a plasma enhanced chemical vapor deposition reactor using TEOS, O2, and either C2F6 or NF3. Properties such as deposition rate, film refractive index, dielectric constant, density, and fluorine concentration were investigated as a function of experimental conditions. Based on nuclear reaction analysis (NRA) and Fourier Transform Infrared (FTIR) measurements, no single linear relationship was found between fluorine concentration or film density and dielectric constant. Special attention was paid to the interaction of fluorine with metals. NRA and X-ray photoelectron spectroscopy (XPS) depth profiles showed that fluorine diffuses rapidly through aluminum and piles up at the free surface. The effect of various plasma treatments was investigated to passivate the surface of fluorinated silicon oxide. CF4 - O2 plasma treatment of the fluorinated oxide before aluminum deposition produced significant improvement in inhibiting fluorine diffusion into aluminum without increasing the dielectric constant.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.