We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
In older patients with mental and physical multimorbidity (MPM), personality assessment is highly complex. Our aim was to examine personality traits in this population using the Hetero-Anamnestic Personality questionnaire (HAP), and to compare the premorbid perspective of patients’ relatives (HAP) with the present-time perspective of nursing staff (HAP-t).
Design:
Cross-sectional.
Setting:
Dutch gerontopsychiatric nursing home (GP-NH) units.
Participants:
Totally, 142 GP-NH residents with MPM (excluding dementia).
Measurements:
NH norm data of the HAP were used to identify clinically relevant premorbid traits. Linear mixed models estimated the differences between HAP and HAP-t trait scores (0–10). Agreement was quantified by intraclass correlation coefficients (ICCs). All HAP-HAP-t analyses were corrected for response tendency (RT) scores (−10–10).
Results:
78.4% of the patients had at least one premorbid maladaptive trait, and 62.2% had two or more. Most prevalent were: “disorderly” (30.3%), “unpredictable/impulsive” (29.1%) and “vulnerable” (27.3%) behavior. The RT of relatives appeared significantly more positive than that of nursing staff (+1.8, 95% CI 0.6–2.9, p = 0.002). After RT correction, the traits “vulnerable”, “perfectionist” and “unpredictable/impulsive” behavior scored higher on the HAP than HAP-t (respectively +1.2, 95% CI 0.6–1.7, p < 0.001; +2.1, 95% CI 1.3–2.8, p < 0.001; +0.6, 95% CI 0.1–1.1, p = 0.013), while “rigid” behavior scored lower (−0.7, 95% CI −1.3 to −0.03, p = 0.042). Adjusted ICCs ranged from 0.15 to 0.58.
Conclusions:
Our study shows high percentages of premorbid maladaptive personality traits, which calls for attention on personality assessment in MPM NH residents. Results also indicate that the HAP and HAP-t questionnaires should not be used interchangeably for this patient group in clinical practice.
OBJECTIVES/GOALS: In this study, we aim to report the role of porins and blaCTX-M β-lactamases among Escherichia coli and Klebsiella pneumoniae, focusing on emerging carbapenem resistant Enterobacterales (CRE) subtypes, including non-carbapenemase producing Enterobacterales (NCPE) and ertapenem-resistant but meropenem-susceptible (ErMs) strains. METHODS/STUDY POPULATION: Whole genome sequencing was conducted on 76 carbapenem-resistant isolates across 5 hospitals in San Antonio, U.S. Among these, NCP isolates accounted for the majority of CRE (41/76). Identification and antimicrobial susceptibility testing (AST) results were collected from the clinical charts. Repeat speciation was determined through whole genome sequencing (WGS) analysis and repeat AST, performed with microdilution or ETEST®. Minimum inhibitory concentrations (MIC) were consistent with Clinical and Laboratory Standards Institute (CLSI M100, ED33). WGS and qPCR were used to characterize the resistome of all clinical CRE subtypes, while western blotting and liquid chromatography with tandem mass spectrometry (LC-MS-MS) were used to determine porin expression and carbapenem hydrolysis, respectively. RESULTS/ANTICIPATED RESULTS: blaCTX-Mwas found to be most prevalent among NCP isolates (p = 0.02). LC-MS/MS analysis of carbapenem hydrolysis revealed that blaCTX-M-mediated carbapenem hydrolysis, indicating the need to reappraise the term, “non-carbapenemase (NCP)®” for quantitatively uncharacterized CRE strains harboring blaCTX-M. Susceptibility results showed that 56% of all NCPE isolates had an ErMs phenotype (NCPE vs. CPE, p < 0.001), with E. coli driving the phenotype (E. coli vs. K. pneumoniae, p < 0.001). ErMs strains carrying blaCTX-M, had 4-fold more copies of blaCTX-M than ceftriaxone-resistant but ertapenem-susceptible isolates (3.7 v. 0.9, p < 0.001). Immunoblot analysis demonstrated the absence of OmpC expression in NCP-ErMs E. coli, with 92% of strains lacking full contig coverage ofompC. DISCUSSION/SIGNIFICANCE: Overall, this work provides evidence of a collaborative effort between blaCTX-M and OmpC in NCP strains that confer resistance to ertapenem but not meropenem. Clinically, CRE subtypes are not readily appreciated, potentially leading to mismanagement of CRE infected patients. A greater focus on optimal treatments for CRE subtypes is needed.
Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods:
We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.
Results:
BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.
Conclusions:
We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown.
Methods
Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group.
Results
We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a ‘cortico-subcortical-cortical’ network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls.
Conclusions
Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Anticipatory pleasure deficits are closely correlated with negative symptoms in schizophrenia, and may be found in both clinical and subclinical populations along the psychosis continuum. Prospection, which is an important component of anticipatory pleasure, is impaired in individuals with social anhedonia (SocAnh). In this study, we examined the neural correlates of envisioning positive future events in individuals with SocAnh.
Methods
Forty-nine individuals with SocAnh and 33 matched controls were recruited to undergo functional MRI scanning, during which they were instructed to simulate positive or neutral future episodes according to cue words. Two stages of prospection were distinguished: construction and elaboration.
Results
Reduced activation at the caudate and the precuneus when prospecting positive (v. neutral) future events was observed in individuals with SocAnh. Furthermore, compared with controls, increased functional connectivity between the caudate and the inferior occipital gyrus during positive (v. neutral) prospection was found in individuals with SocAnh. Both groups exhibited a similar pattern of brain activation for the construction v. elaboration contrast, regardless of the emotional context.
Conclusions
Our results provide further evidence on the neural mechanism of anticipatory pleasure deficits in subclinical individuals with SocAnh and suggest that altered cortico-striatal circuit may play a role in anticipatory pleasure deficits in these individuals.
Childhood trauma is a vulnerability factor for the development of obsessive–compulsive disorder (OCD). Empirical findings suggest that trauma-related alterations in brain networks, especially in thalamus-related regions, have been observed in OCD patients. However, the relationship between childhood trauma and thalamic connectivity in patients with OCD remains unclear. The present study aimed to examine the impact of childhood trauma on thalamic functional connectivity in OCD patients.
Methods
Magnetic resonance imaging resting-state scans were acquired in 79 patients with OCD, including 22 patients with a high level of childhood trauma (OCD_HCT), 57 patients with a low level of childhood trauma (OCD_LCT) and 47 healthy controls. Seven thalamic subdivisions were chosen as regions of interest (ROIs) to examine the group difference in thalamic ROIs and whole-brain resting-state functional connectivity (rsFC).
Results
We found significantly decreased caudate-thalamic rsFC in OCD patients as a whole group and also in OCD_LCT patients, compared with healthy controls. However, OCD_HCT patients exhibited increased thalamic rsFC with the prefrontal cortex when compared with both OCD_LCT patients and healthy controls.
Conclusions
Taken together, OCD patients with high and low levels of childhood trauma exhibit different pathological alterations in thalamic rsFC, suggesting that childhood trauma may be a predisposing factor for some OCD patients.
Schizotypy refers to schizophrenia-like traits below the clinical threshold in the general population. The pathological development of schizophrenia has been postulated to evolve from the initial coexistence of ‘brain disconnection’ and ‘brain connectivity compensation’ to ‘brain connectivity decompensation’.
Methods
In this study, we examined the brain connectivity changes associated with schizotypy by combining brain white matter structural connectivity, static and dynamic functional connectivity analysis of diffusion tensor imaging data and resting-state functional magnetic resonance imaging data. A total of 87 participants with a high level of schizotypal traits and 122 control participants completed the experiment. Group differences in whole-brain white matter structural connectivity probability, static mean functional connectivity strength, dynamic functional connectivity variability and stability among 264 brain sub-regions of interests were investigated.
Results
We found that individuals with high schizotypy exhibited increased structural connectivity probability within the task control network and within the default mode network; increased variability and decreased stability of functional connectivity within the default mode network and between the auditory network and the subcortical network; and decreased static mean functional connectivity strength mainly associated with the sensorimotor network, the default mode network and the task control network.
Conclusions
These findings highlight the specific changes in brain connectivity associated with schizotypy and indicate that both decompensatory and compensatory changes in structural connectivity within the default mode network and the task control network in the context of whole-brain functional disconnection may be an important neurobiological correlate in individuals with high schizotypy.
Objectives: To adequately monitor the course of cognitive functioning in persons with moderate to severe dementia, relevant cognitive tests for the advanced dementia stages are needed. We examined the ability of a test developed for the advanced dementia stages, the Severe Impairment Battery Short version (SIB-S), to measure cognitive change over time. Second, we examined type of memory impairment measured with the SIB-S in different dementia stages. Methods: Participants were institutionalized persons with moderate to severe dementia (N = 217). The SIB-S was administered at 6-month intervals during a 2-year period. Dementia severity at baseline was classified according to Global Deterioration Scale criteria. We used mixed models to evaluate the course of SIB-S total and domain scores, and whether dementia stage at baseline affected these courses. Results: SIB-S total scores declined significantly over time, and the course of decline differed significantly between dementia stages at baseline. Persons with moderately severe dementia declined faster in mean SIB-S total scores than persons with moderate or severe dementia. Between persons with moderate and moderately severe dementia, there was only a difference in the rate of decline of semantic items, but not episodic and non-semantic items. Conclusions: Although modest floor and slight ceiling effects were noted in severe and milder cases, respectively, the SIB-S proved to be one of few available adequate measures of cognitive change in institutionalized persons with moderate to severe dementia. (JINS, 2019, 25, 204–214)
The neuropsychological origins of negative syndrome of schizophrenia remain elusive. Evidence from behavioural studies, which utilised emotion-inducing pictures to elicit motivated behaviour generally reported that that schizophrenia patients experienced similar affective experience as healthy individuals but failed to translate emotional salience to motivated behaviour, a phenomenon called emotion–behaviour decoupling. However, a few studies have examined emotion–behaviour decoupling in non-psychotic high-risk populations, who are relatively unaffected by medication effects.
Methods
In this study, we examined the nature and extent of emotion–behaviour decoupling in in three independent samples (65 schizophrenia patients v. 63 controls; 40 unaffected relatives v. 45 controls; and 32 individuals with social anhedonia v. 32 controls). We administered an experimental task to examine their affective experience and its coupling with behaviour, using emotion-inducing slides, and allowed participants to alter stimulus exposure using button-pressing to seek pleasure or avoid aversion.
Results
Schizophrenia patients reported similar affective experiences as their controls, while their unaffected relatives and individuals with high levels of social anhedonia exhibited attenuated affective experiences, in particular in the arousal aspect. Compared with their respective control groups, all of the three groups showed emotion–behaviour decoupling.
Conclusions
Our findings support that both genetically and behaviourally high-risk groups exhibit emotion–behaviour decoupling. The familial association apparently supports its role as a putative trait marker for schizophrenia.
Microscopic and textural observations were made on ice samples cored from Blue Glacier slightly below the equilibrium line to depths of 60 m. Observations were started within a few minutes after collection. Water was found in veins along three-grain intersections, in lenses on grain boundaries and in irregular shapes. Gas was found in bubbles in the interior of crystals, in bubbles touching veins, and locally in veins. Vein sizes showed some spread; average cross-sectional area was about 7 × 10−4 mm2 with no discernible, trend with texture or depth except within 7 m of the surface. Before the samples were examined they could have experienced a complex relaxation which could have changed them significantly. As a result it is not possible to determine the in situ size of veins, but an upper limit can be determined. Also it is not possible to predict intergranular water flux per unit area, but 1 × 10−1 m a−1 represents an upper limit. In coarse-grained ice the water flux density is likely to be even smaller, because of a low density of veins, and blocking by bubbles. This indicates that only a very small fraction of the melt-water production on a typical summer day can penetrate into the glacier on an intergranular scale except possibly near the surface. The existence of conduit-like features in several cores suggests that much melt water can nevertheless penetrate the ice locally without large-scale lateral movements along the glacier surface. The observed profile of ice temperature indicates that the intergranular water flux may be much smaller than the upper limit determined from the core samples.
Six snow-pit records recovered from Siple Dome, West Antarctica, during 1994 are used to study seasonal variations in chemical (major ion and H202), isotopic (deuterium) and physical stratigraphic properties during the 1988-94 period. Comparison of δD measurements and satellite-derived brightness temperature for the Siple Dome area suggests that most seasonal SD maxima occur within ±4 weeks of each 1 January. Several other chemical species (H2O2, non-sea-salt (nss) SO42-, methanesulfonic acid and NO3-) show coeval peaks with SD, together providing an accurate method for identifying summer accumulation. Sea-salt-derived species generally peak during winter/spring, but episodic input is noted throughout some years. No reliable seasonal signal is identified in species with continental sources (nssCa2+ nss Mg2+), NH4+ or nssCl-. Visible strata such as large depth-hoar layers (>5 cm) are associated with summer accumulation and its metamorphosis, but smaller hoar layers and crusts are more difficult to interpret. A multi-parameter approach is found to provide the most accurate dating of these snow-pit records, and is used to determine annual layer thicknesses at each site Significant spatial accumulation variability exists on an annual basis, but mean accumulation in the sampled 10 km2 grid for the 1988-94 period is fairly uniform.
One of the questions still unanswered concerning the surge behavior of glaciers concerns their quasi-periodic occurrence. Some results on the phenomenological connection between local cumulative balance and surge initiation of Variegated Glacier, Alaska, U.S.A., are discussed here. Based on climate data from neighboring weather stations, an empirical relation between precipitation, temperature and local mass balance is established and used to reconstruct the annual balance at a location in the accumulation area back to 1905. Between the last four surges in 1946/47, 1964/65, 1982/83 and 1994/95, the ice-equivalent cumulative balance was 43.5 m on average, with a 1σ error of 1.2 m. Although the existence of a surge level cannot be directly interpreted in physical terms, it explains the variable length of the quiescent periods of Variegated Glacier by variations in the accumulation rate prior to the surge. We use the surge level to hindcast former unobserved surges, to compare the results with other surge datings obtained from photographs and to establish a complete surge history for Variegated Glacier for the 20th century.
The spatial distribution of accumulation across Siple Dome, West Antarctica, is determined from analysis of the shapes of internal layers detected by radio-echo sounding (RES) measurements. A range of assumed accumulation patterns is used in an ice-flow model to calculate a set of internal layer patterns. Inverse techniques are used to determine which assumed accumulation pattern produces a calculated internal layer pattern that best matches the shape of internal layers from RES measurements. All of the observed internal layer shapes at Siple Dome can be matched using a spatially asymmetric accumulation pattern which has been steady over time. Relative to the divide, the best-fitting accumulation pattern predicts 40% less accumulation 30 km from the divide on the south flank of Siple Dome and 15–40% more accumulation 30 km from the divide on the north flank. The data also allow the possibility for a small time variation of the pattern north of the divide. The mismatch between the calculated and the observed layer shapes is slightly reduced when the accumulation rate north of the divide is higher in the past (> 5kyr BP) than at present. Sensitivity tests show that the predicted change in the spatial accumulation pattern required to cause the slight Siple Dome divide migration (inferred from previous studies) would be detectable in the internal layer pattern if it persisted for > 2 kyr. Our analysis reveals no evidence that such a change has occurred, and the possible change in accumulation distribution allowed by the data is in the opposite sense. Therefore, it is unlikely that the Siple Dome divide migration has been caused by a temporal change in the spatial pattern of accumulation. This conclusion suggests the migration may be caused by elevation changes in Ice Streams C and D at the boundaries of Siple Dome.
Measurements of the surface and internal layer geometry from ice-penetrating radar and global positioning system surveys on three inter-ice-stream ridges in West Antarctica (Siple Dome, ridge DE and ridge BC) are examined with ice-flow models to infer (1) the history of the divide position at each site and (2) the spatial pattern of accumulation across the ridges. We find that the divide position is most steady at Siple Dome, somewhat steady at ridge DE and highly variable at ridge BC. Data from Siple Dome and ridge DE show evidence for steady northward motion of the ice divide for the past few thousand years. The layers beneath ridge BC suggest a 5 km northward shift of the divide position within the past several hundred years. Assuming the divide shifts are all due to changing elevation of the bounding ice streams, we infer the relative elevation history for segments of Ice Streams B–E. The northward displacement of the divide for all ridges implies a progressive relative thinning of the ice streams from E to B, with most dramatic recent thinning (100 m in <103 years) of Ice Stream B relative to Ice Stream C. Analysis of the internal layer pattern across the ridges indicates a south–north accumulation gradient with higher accumulation rates on the northern flanks of the ridges in all three cases. The inferred accumulation distribution is nearly uniform on the northern flanks, decreases sharply within a few ice thicknesses across the divides, and then decreases gradually farther to the south. The north/south decrease is strongest for ridge DE and weakest for ridge BC. This spatial pattern and the reduction in gradient strength with distance from the Amundsen Sea is consistent with the hypothesis that storms from the Amundsen Sea carry moisture first south then west over West Antarctica and deposit more snow on the windward side of ridges due to orographic lifting. This pattern has been stable for at least the past several thousand years.
Analysis of the cross-flow transmission of force from the central parts of a well-lubricated ice stream to its margins shows that there is a corresponding shift in the lateral location of motion-induced heat generation. The rate of basal heat generation in the center can be substantially smaller than the local rate of potential energy loss given by driving stress times the speed of downslope motion. The basal heating is a maximum for an intermediate level of lubrication for which speed is about 40% of the speed over a friction-less bed and base stress is about 25% of the driving stress. Stable and unstable balances between meltwater production and drainage on the bed are identified. A stable steady state with a speed less (more) than that giving maximum heat generation is termed drainage-(production-) limited, since an increase in speed would lead to increased (decreased) basal melting and must (need not) be balanced by increased drainage. It is shown that gradual evolution of the basal water drainage system and the factors affecting basal melting can cause discontinuous jumps between fast- and slow-moving states. A simplified analysis applied to six cross-sections of West Antarctic Ice Streams B, D, E and Rutford Ice Stream shows them to be diverse in the level of support from the sides and corresponding shift of mechanical heating sideward from their central parts. The cross-sections of Ice Stream B near “Upstream B” may be production-limited, because of especially high lubrication and related support from the sides. Cross-sections in the upper part of Ice Stream D, Ice Stream E and Rutford Ice Stream are in a drainage-limited condition. Substantial reduction of basal heat generation by side drag (in most cases) and expected high heat flow into the basal ice associated with low thickness (in some cases) tends to favor basal freezing. Nevertheless, all of the examined cross-sections except one are expected to experience basal melting with a modest geothermal heat-flux density of 60 m W m−1 or less in some cases. The lower part of Ice Stream B is an exception, where the analysis indicates that geothermal flux density must exceed 80–100 m W−1 m to maintain melting. If this high geothermal flux is not present, then the base of the lower part of Ice Stream B may be freezing, which would suggest continued deceleration of this part of Ice Stream B.
We have used ground-based radio-echo sounding (RES) profiles to reveal the spatial distribution of basal and internal ice properties across Siple Dome, West Antarctica, and under the dormant ice streams on its flanks. The RES-detected bed-reflection power, corrected for the effects of instrumentation and ice-thickness variation, is nearly constant across Siple Dome at a value suggesting spatially homogeneous basal properties of ice frozen to bedrock. Till, if present under the dome, must be thin (<0.1 m). The high basal reflectivity measured under now dormant “Siple Ice Stream” (SIS) and Ice Stream C suggests that they are underlain by either a thin (<0.05 m) water layer or a thick (>1 m) thawed or frozen till layer. The evidence that the dormant SIS is not frozen directly to underlying bedrock (but is separated by a water or till layer) is a further indication that it was once an active ice stream, and suggests that streaming motion may have ceased before the basal layer was frozen. The absence of a thick till layer beneath Siple Dome is consistent with its apparent stability as an inter-ice-stream ridge in the past and may suggest that it will remain as a stable limitation of ice-stream width in the future.
We present results from satellite imagery, ice-motion surveys and ice-penetrating radar studies of part of the north margin of Ice Stream C, one of the ice streams draining the West Antarctic ice sheet to the “Ross Embayment”. Our studies suggest that the shutdown of Ice Stream C about 150 years ago was not a single event, but a sequence involving stagnation of ice and migration of the ice-stream boundary. Ground-based studies confirm the inference from imagery that a series of former shear zones exist, decreasing in age towards the ice-stream center. A region of ice-stream trunk, including a former margin, lies sheared and folded between the (recent) inner and (older) outer margins of the area. ice-motion and topographic surveys give some constraint on the time of shutdown of the outer margin. The results provide a forum for discussing shutdown mechanisms. Possible causes for the stepwise migration of the north margin of Ice Stream C include a gradual decrease in ice flux, a reduction in the available water or hydrostatic pressure in the basal till, or a freezing of the till layers on the northern side.
Measurement of geometry, motion, and mass balance from Variegated Glacier, Alaska portray conditions in this surge-type glacier close to the mid-point of its 20 year surge cycle. Comparison of longitudinal profiles of ice depth, surface slope, and surface speed indicate that the motion occurs largely by internal deformation assuming the ice deforms according to the experimental law of Glen. Surface speed is not noticeably affected by local surface slope on the scale of the ice thickness or smaller, but correlates well with slope determined on a longitudinal averaging scale about one order of magnitude larger than the ice depth. The rate of motion on Variegated Glacier agrees well with rates on non-surge type temperate glaciers which have similar depth and slope. Although the (low regime at the time of the measurements is apparently typical of temperate glaciers, a large discrepancy between the balance flux needed for steady state and the actual flux is indicative of a rapidly changing surface elevation profile and internal stress distribution.
Variegated Glacier is a surge-type glacier in the St Elias mountain range in Alaska. The interval between surges is about 20 years; the last one occurred in 1964 to 1965. This glacier has been studied extensively since 1973 (Bindschadler and others, 1977). Thus far, measurements of ice velocities have been restricted to the surface. They have been analyzed using geophysically measured ice depths, in order to estimate ice velocities in the ice mass and at the base (Bindschadler and others, 1978). From 1973 to 1977 the distribution of annual ice velocities along most of the length of the glacier can be explained primarily by internal deformation without major contribution from sliding at the base. However, the variation of surface velocity with time gives definite indication that sliding occurs in summer and that the average summer rate is increasing progressively from summer to summer and that in a zone 5 to 7 km below the head of the glacier the summer-to-summer increase in inferred sliding rate is especially rapid. This is a notably distinguishing feature, which is probably indicative of a build-up toward the next surge. In order to obtain direct information about sliding-rates and water pressures at the base in this zone, a bore hole was drilled to the bottom of the glacier about 6 km below the glacier head. Observations in the hole started in June 1978 and were continued until 31 July 1978. The hole connected to an englacial water system at a depth of 204 m whereupon the water level dropped gradually to about 100 m below the surface. The last 6 m above-the base at 356 m could be drilled only by means of a cable tool because of the presence of debris-rich ice. Upon reaching the bottom, the water level increased rapidly to the firn water table at about 8 m below surface. Large variations in water level of about 200 m occurred during the following period of observation of 35 d. Major events such as audible icequakes, heavy rainfalls, and a period of unusually high ablation were associated with abrupt increases of water level up to the firn water table. High water pressure at the bottom drove a flow of muddy and sandy water upward in the hole. Consequently high freezing rates in the lower 150 m of the hole produced a very rough bore-hole wall covered with ledges, coral-reef-like features, grooves, and pockets filled with sand. Near the bottom, embedded rocks stuck out of the bore-hole wall. These features were recognized by bore-hole television. The bore-hole bottom consisted of sand which continuously proliferated and washed into the hole. Attempts to remove this sand by means of a sand pump failed, the bailed-out sand being replaced immediately. From bore-hole inclinometry an internal deformation of the ice mass of 0.22 m d−1 was obtained. Together with average surface velocity of 0.47 m d−1 we get a sliding velocity of 0.25 m d−1, averaged over the time of observation. This result confirms the sliding velocities inferred from surface velocity measurements. It also lies on the exponential trend line of increasing summer-to-summer velocities showing a doubling of sliding velocities about every two years (Bindschadler and others, unpublished). This strongly indicates that the next surge is likely to occur in the early eighties. Input of water from the surface probably will play a role in triggering the surge.