We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: TERT promoter mutation (TPM) is an established biomarker in meningiomas associated with aberrant TERT expression and reduced progression-free survival (PFS). TERT expression, however, has also been observed even in tumours with wildtype TERT promoters (TP-WT). This study aimed to examine TERT expression and clinical outcomes in meningiomas. Methods: TERT expression, TPM status, and TERT promoter methylation of a multi-institutional cohort of meningiomas (n=1241) was assessed through nulk RNA sequencing (n=604), Sanger sequencing of the promoter (n=1095), and methylation profiling (n=1218). 380 Toronto meningiomas were used for discovery, and 861 external institution samples were compiled as a validation cohort. Results: Both TPMs and TERTpromoter methylation were associated with increased TERT expression and may represent independent mechanisms of TERT reactivation. TERT expression was detected in 30.4% of meningiomas that lacked TPMs, was associated with higher WHO grades, and corresponded to shorter PFS, independent of grade and even among TP-WT tumours. TERT expression was associated with a shorter PFS equivalent to those of TERT-negative meningiomas of one higher grade. Conclusions: Our findings highlight the prognostic significance of TERT expression in meningiomas, even in the absence of TPMs. Its presence may identify patients who may progress earlier and should be considered in risk stratification models.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
The purpose of this study was to explore the electroencephalogram (EEG) features sensitive to situation awareness (SA) and then classify SA levels. Forty-eight participants were recruited to complete an SA standard test based on the multi-attribute task battery (MATB) II, and the corresponding EEG data and situation awareness global assessment technology (SAGAT) scores were recorded. The population with the top 25% of SAGAT scores was selected as the high-SA level (HSL) group, and the bottom 25% was the low-SA level (LSL) group. The results showed that (1) for the relative power of $\beta$1 (16–20Hz), $\beta$2 (20–24Hz) and $\beta$3 (24–30Hz), repeated measures analysis of variance (ANOVA) in three brain regions (Central Central-Parietal, and Parietal) × three brain lateralities (left, midline, and right) × two SA groups (HSL and LSL) showed a significant main effect for SA groups; post hoc comparisons revealed that compared with LSL, the above features of HSL were higher. (2) for most ratio features associated with $\beta$1 ∼ $\beta$3, ANOVA also revealed a main effect for SA groups. (3) EEG features sensitive to SA were selected to classify SA levels with small-sample data based on the general supervised machine learning classifiers. Five-fold cross-validation results showed that among the models with easy interpretability, logistic regression (LR) and decision tree (DT) presented the highest accuracy (both 92%), while among the models with hard interpretability, the accuracy of random forest (RF) was 88.8%, followed by an artificial neural network (ANN) of 84%. The above results suggested that (1) the relative power of $\beta$1 ∼ $\beta$3 and their associated ratios were sensitive to changes in SA levels; (2) the general supervised machine learning models all exhibited good accuracy (greater than 75%); and (3) furthermore, LR and DT are recommended by combining the interpretability and accuracy of the models.
In recent years, there has been significant momentum in applying deep learning (DL) to machine health monitoring (MHM). It has been widely claimed that DL methodologies are superior to more traditional techniques in this area. This paper aims to investigate this claim by analysing a real-world dataset of helicopter sensor faults provided by Airbus. Specifically, we will address the problem of machine sensor health unsupervised classification. In a 2019 worldwide competition hosted by Airbus, Fujitsu Systems Europe (FSE) won first prize by achieving an F1-score of 93% using a DL model based on generative adversarial networks (GAN). In another comprehensive study, various modified and existing image encoding methods were compared for the convolutional auto-encoder (CAE) model. The best classification result was achieved using the scalogram as the image encoding method, with an F1-score of 91%. In this paper, we use these two studies as benchmarks to compare with basic statistical analysis methods and the one-class supporting vector machine (SVM). Our comparative study demonstrates that while DL-based techniques have great potential, they are not always superior to traditional methods. We therefore recommend that all future published studies of applying DL methods to MHM include appropriately selected traditional reference methods, wherever possible.
In this paper, an adaptive neural output-constrained control algorithm is proposed for a class of non-affine kinetic kill vehicle (KKV) systems. The key point is that the non-affine control law can be designed and the output of the KKV system conform to the output limit with the aid of the proposed method. Due to the aerodynamic moments, the actual control torque is non-affine, which can be addressed by introducing an integral process to the design of the controller. Besides, in order to improve the control precision, a nonlinear mapping is put forward so that the output constraint can be transformed to the constraint of the introduced dynamic signal that can be simply achieved. From the simulation results it can be concluded that the states of the KKV system can track the desired trajectories in spite of different working conditions and the control precision is higher compared with other control methods.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
We examined the effect of an antimicrobial stewardship program (ASP), procalcitonin testing and rapid blood-culture identification on hospital mortality in a prospective quality improvement project in critically ill septic adults. Secondarily, we have reported antimicrobial guideline concordance, acceptance of ASP interventions, and antimicrobial and health-resource utilization.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
Aneurysmal bone cysts are expansile benign lesions associated with compressive destruction and obscure pathogenesis. The most common sites of temporal bone involvement are the petrous apex, squamous portions and mastoid.
Case report
This paper reports a right temporal aneurysmal bone cyst in a 51-year-old man who presented clinically with facial palsy, and hearing loss and impaired vestibular function. Magnetic resonance imaging and computed tomography findings were consistent with a diagnosis of aneurysmal bone cyst. Inter-operative findings showed that the lesion had caused compressive damage to the internal auditory canal. Following surgical excision, the patient experienced vertigo, indicating recovery of vestibular function. Follow-up imaging revealed complete resection without clinical recurrence.
Conclusion
To our knowledge, this is the first report of aneurysmal bone cyst invasion of the inner auditory canal. Our clinical experience indicates that vestibular nerve damage recovery is relatively uncommon. This case report will hopefully inform future studies.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
A new near-infrared direct acceleration mechanism driven by Laguerre–Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum. Three-dimensional simulations show that a 2-μm circularly polarized ${\mathrm{LG}}_p^l$ (p = 0, l = 1, σz = −1) laser can directly manipulate attosecond electron slices in additional dimensions (angular directions) and give them annular structures and angular momentums. These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators, edge-enhancement electron imaging, structured X-ray generation, and analysis and manipulation of nanomaterials.
The characteristic traits of maize (Zea mays L.) leaves affect light interception and photosynthesis. Measurement or estimation of individual leaf area has been described using discontinuous equations or bell-shaped functions. However, new maize hybrids show different canopy architecture, such as leaf angle in modern maize which is more upright and ear leaf and adjacent leaves which are longer than older hybrids. The original equations and their parameters, which have been used for older maize hybrids and grown at low plant densities, will not accurately represent modern hybrids. Therefore, the aim of this paper was to develop a new empirical equation that captures vertical leaf distribution. To characterize the vertical leaf profile, we conducted a field experiment in Jilin province, Northeast China from 2015 to 2018. Our new equation for the vertical distribution of leaf profile describes leaf length, width or leaf area as a function of leaf rank, using parameters for the maximum value for leaf length, width or area, the leaf rank at which the maximum value is obtained, and the width of the curve. It thus involves one parameter less than the previously used equations. By analysing the characteristics of this new equation, we identified four key leaf ranks (4, 8, 14 and 20) for which leaf parameter values need to be quantified in order to have a good estimation of leaf length, width and area. Together, the method of leaf area estimation proposed here adds versatility for use in modern maize hybrids and simplifies the field measurements by using the four key leaf ranks to estimate vertical leaf distribution in maize canopy instead of all leaf ranks.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
The present study was undertaken to evaluate the influence of rumen-protected folic acid (RPFA) on slaughter performance, visceral organ and gastrointestinal tract coefficients, and meat quality in lambs. Sixty-six lambs from 120 Hu ewes were selected based on body weight and maternal diets and then assigned to six groups using a randomised block experimental design in a 3 × 2 factorial arrangement. The first factor was folic acid (FA) as RPFA in the maternal diet (0 mg/kg (M0F), 16 mg/kg (M16F) or 32 mg/kg (M32F) on DM basis). The second factor was FA in the lambs’ diet from weaning until slaughter (0 mg/kg (OC) or 4·0 mg/kg (OF)). The results indicated that the addition of 16 mg/kg FA to the maternal diet increased pre-slaughter weight (PSW), dressing and meat percentage, the reticulum and omasum coefficients, length of the jejunum and ileum, tail fat and perirenal fat coefficient and a* value of the meat colour. The addition of RPFA to the lambs’ diet increased PSW, dressing and meat percentage, eye muscle area, abomasum weight, weight and length of the small intestine, but reduced the coefficients of tail fat. An M × O interaction was observed for the weights of heart, lungs, rumen and total stomach, weight and coefficient of omental fat and the girth rib value. Collectively, RPFA in the maternal and lambs’ diet improved slaughter performance and meat quality by stimulating the morphological development of the gastrointestinal tract and the distribution of fat in the body.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
To evaluate the impacts of guanidinoacetic acid (GAA) and coated folic acid (CFA) on growth performance, nutrient digestion and hepatic gene expression, fifty-two Angus bulls were assigned to four groups in a 2 × 2 factor experimental design. The CFA of 0 or 6 mg/kg dietary DM folic acid was supplemented in diets with GAA of 0 (GAA−) or 0·6 g/kg DM (GAA+), respectively. Average daily gain (ADG), feed efficiency and hepatic creatine concentration increased with GAA or CFA addition, and the increased magnitude of these parameters was greater for addition of CFA in GAA− diets than in GAA+ diets. Blood creatine concentration increased with GAA or CFA addition, and greater increase was observed when CFA was supplemented in GAA+ diets than in GAA− diets. DM intake was unchanged, but rumen total SCFA concentration and digestibilities of DM, crude protein, neutral-detergent fibre and acid-detergent fibre increased with the addition of GAA or CFA. Acetate:propionate ratio was unaffected by GAA, but increased for CFA addition. Increase in blood concentrations of albumin, total protein and insulin-like growth factor-1 (IGF-1) was observed for GAA or CFA addition. Blood folate concentration was decreased by GAA, but increased with CFA addition. Hepatic expressions of IGF-1, phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin and ribosomal protein S6 kinase increased with GAA or CFA addition. Results indicated that the combined supplementation of GAA and CFA could not cause ADG increase more when compared with GAA or CFA addition alone.
Microwaves are a form of electromagnetic radiation commonly used for telecommunications, navigation and food processing. More recently microwave technologies have found applications in fibre-reinforced polymer composites, which are increasingly used in aircraft structures. Microwave energy can be applied with low power (up to milliwatts) for non-destructive testing and high power (up to kilowatts) for heating/curing purposes. The state-of-the-art applications at high power include curing, three-dimensional (3D) printing, joining and recycling, whereas low-power microwave techniques can provide quality checks, strain sensing and damage inspection. Low-power microwave testing has the advantage of being non-contact, there is no need for surface transducers or couplants, it is operator friendly and relatively inexpensive; high-power microwave energy can offer volumetric heating, reduced processing time and energy saving with no ionising hazards. In this paper the recent research progress is reviewed, identifying achievements and challenges. First, the critical electromagnetic properties of composites that are closely related to the heating and sensing performance are discussed. Then, representative case studies are presented. Finally, the trends are outlined, including intelligent/automated inspection and solid-state heating.