We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the influence of suspended kelp farms on ocean mixed layer hydrodynamics in the presence of currents and waves. We use the large eddy simulation method, where the wave effect is incorporated by solving the wave-averaged equations. Distinct Langmuir circulation patterns are generated within various suspended farm configurations, including horizontally uniform kelp blocks and spaced kelp rows. Intensified turbulence arises from the farm-generated Langmuir circulation, as opposed to the standard Langmuir turbulence observed without a farm. The creation of Langmuir circulation within the farm is attributed to two primary factors depending on farm configuration: (i) enhanced vertical shear due to kelp frond area density variability, and (ii) enhanced lateral shear due to canopy discontinuity at lateral edges of spaced rows. Both enhanced vertical and lateral shear of streamwise velocity, representing the lateral and vertical vorticity components, respectively, can be tilted into downstream vorticity to create Langmuir circulation. This vorticity tilting is driven by the Craik–Leibovich vortex force associated with the Stokes drift of surface gravity waves. In addition to the farm-generated Langmuir turbulence, canopy shear layer turbulence is created at the farm bottom edge due to drag discontinuity. The intensity of different types of turbulence depends on both kelp frond area density and the geometric configuration of the farm. The farm-generated turbulence has substantial consequences for nutrient supply and kelp growth. These findings also underscore the significance of the presence of obstacle structures in modifying ocean mixed layer characteristics.
Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.
Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.
The recent development in the miniaturisation of small satellites and their subsystems has opened a new window of research for the universities around the globe. The low-cost, lightweight, small and flexible satellites have resulted in a broad range of multi-cube format small satellites, constructed from one-to-many adjoined cubes, having total mass between 1 and 10kg. The most challenging design part of the small satellites is to implant a large number of subsystems in a limited space. In order to resolve this issue, the designers are trying to shrink down the subsystem’s dimensions further. In this paper, a magnetorquer coil is designed and analysed for a 4U (4 units cube; 33 × 33 × 16.5)cm3 and 8U (8 units cube; 33 × 33 × 33)cm3 multi-cube small satellites, respectively. The coil is embedded in the six internal layers of an eight-layers printed circuit board (PCB). The designed magnetorquer system is fully reconfigurable and multiple coils configurations can be achieved by attaching them in series, parallel and hybrid arrangements. Due to embedded nature, the heat generated by the coil may damage the components mounted on the PCB outer surfaces. Therefore, thermal analysis is performed to ensure that the coil generated heat will not cross the PCB components temperature safety limits. All the possible combinations of the coils are analysed for current drawn, power consumption, heat dissipation, magnetic moment generation and resultant torque. A desired torque can be attained by using a particular coil configuration at the cost of specific amount of consumed power and PCB surface thermals.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
The gut microbiota is directly influenced by dietary components, and it plays critical roles in chronic diseases. Excessive consumption of trans-fatty acids (TFA) is associated with obesity induced by alterations in gut microbiota, but the links between obesity and gut microbiota remain unclear. Therefore, studies examining the impact of TFA on intestinal microflora are essential. In our study, we performed 16S ribosomal RNA gene sequencing on faecal samples from Sprague–Dawley rats fed a basal diet (control (CON) group), high-fat (HF) diet (diet-induced obesity (DIO) group) or TFA diets (1 % TFA group and 8 % TFA group) for 8 weeks to investigate the effects of TFA/HF diets on obesity and gut microbiota composition. We found that the TFA/HF diets significantly induced obesity and changes in blood and brain physiological parameters of the rats. The relative abundance of the phyla Firmicutes and Bacteroidetes was inversely altered in the three test groups compared with the CON group. Proteobacteria increased slightly in the DIO, 1 % TFA and 8 % TFA groups. The genus Bacteroides increased in the DIO and 1 % TFA groups, but Muribaculaceae decreased in all experimental groups compared with the CON group. Moreover, significant differences were observed among clusters of orthologous group functional categories of the four dietary groups. Our observations suggested that the TFA/HF diets induced obesity and dysfunction of gut microbiota. Gut dysbiosis might mediate the obesity effects of TFA/HF diets.
In this work, a N-doped CsTi2NbO7@g-C3N4 (NTCN) heterojunction nanocomposite was synthesized by a simple one-step calcination method. The as-prepared samples were characterized by means of X-ray diffraction patterns, scanning electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, and Fourier transformed infrared spectroscopy. The results showed that g-C3N4 was formed both on the surface and within the interlayers of CsTi2NbO7, in which CsTi2NbO7 was in situ doped by nitrogen atoms to form N–CsTi2NbO7. The NTCN composite displayed higher electrocatalytic activity toward the detection of nitrite than pure CsTi2NbO7 and g-C3N4. The main reasons could be attributed to the synergistic effects of morphology engineering, N-doping, and layered heterojunction. The NTCN-based electrochemical sensor expressed a good linear relationship range from 0.0999 to 3.15 mmol/L with a detection limit of 2.63 × 10−5 mol/L. The good recovery, stability, and reproducibility of this biosensor showed the potential application in environmental monitoring.
In this study, a mesoscale dislocation simulation method was developed to study the orthogonal cutting of titanium alloy. The evolution of surface grain structure and its effects on the surface mechanical properties were studied by using two-dimensional climb assisted dislocation dynamics technology. The motions of edge dislocations such as dislocation nucleation, junction, interaction with obstacles, and grain boundaries, and annihilation were tracked. The results indicated that the machined surface has a microstructure composed of refined grains. The fine-grains bring appreciable scale effect and a mass of dislocations are piled up in the grain boundaries and persistent slip bands. In particular, dislocation climb can induce a perfect softening effect, but this effect is significantly weakened when grain size is less than 1.65 μm. In addition, a Hall–Petch type relation was predicted according to the arrangement of grain, the range of grain sizes and the distribution of dislocations.
Current ultrasound techniques can accurately determine the chorionicity of twins, but not zygosity. We previously proposed that the zygosity of spontaneously conceived twins can be determined at early ultrasound, where 2 corpora lutea infers dizygosity, and 1 implies monozygosity. Here we did a case series, comparing zygosity predicted using this method with definitive DNA genotyping of twins after birth. We retrospectively identified 14 ultrasound reports of spontaneous twin pregnancies at 6(+0 days) to 13+6 weeks' gestation, where both ovaries were seen and the number of corpora lutea documented. We visited all twin pairs, obtained buccal smears, and determined zygosity by genotyping 9 independent microsatellite markers. All 8 cases where 2 corpora lutea were seen were dizygotic pregnancies. One further case where 3 corpora lutea were seen was also dizygotic. All 3 sets of monozygotic twins had 1 corpus luteum. There were 2 cases incorrectly assigned, where 1 corpus luteum was seen in dizygotic pregnancies. We conclude if 2 corpora lutea are seen at a first trimester ultrasound of spontaneously conceived dichorionic twins, they appear to be almost certainly dizygotic. However, if 1 corpus luteum is seen in dichorionic twins, zygosity cannot be determined with certainty since it is either monozygotic, or dizygotic where a second corpus luteum has been missed.
In vitro bulb scales of Lilium longiflorum×L. formosanum were used as explants to develop a highly efficient regeneration system. A high regeneration rate (100%) was reached through organogenesis on basal Murashige and Skoog (MS) medium supplemented with 1.0 mg/l 6-benzylaminopurine (6-BA) and 1.0 mg/l naphthaleneacetic acid (NAA). A genetic transformation system for the lily was developed using an Agrobacterium tumefaciens-mediated method. An improved genetic transformation rate (12‰) was obtained when the explants were pre-cultured for 3 days, immersed in bacterial suspension (OD600≈0.8) for 5 min, and co-cultivated for 5 days. The binary vector pBI121 containing Zm401, a maize pollen-specific gene, was introduced into the Agrobacterium strain LBA4404 and transformed into the explants using the genetic transformation system. Gene integration into the lily genome was confirmed by polymerase chain reaction (PCR) and PCR–Southern analysis. These results could lead to the production of new pollenless lily plants.
A novel magneto-active gel based nanomaterial system is presented as an externally tunable flow controller inside a microfluidic channel using the thermoresponsive property of the structure. Integration of ferromagnetic nanoparticles (Fe3O4) in the temperature sensitive polymer-poly (N-isopropylacrylamide) (PNIPAM) provides the swelling and de-swelling behavior of magnetic stimuli controlled micro-component by generating the heat due to the hysteresis loss of Fe3o4 under exposure in an alternating magnetic field. The shrinkage rates of the nanomaterial system at the bulk and micro scale are investigated. Size dependent shrinkage rate and actuation efficiency are ideal for various applications like magnetic micro/nano pump, magnetic field controlled drug delivery devices and magnetic switch applications.
To measure the Ag/Co interfacial free energies, biaxial zero creep experiments were performed on Ag/Co multilayer films deposited on the Si (111) wafers. As the samples were heated from room temperature to 450°C, the residual stress in films, which was in situ monitored by substrate curvature technique, decayed gradually to zero due to the increasing plastic deformation in films. After held for several hours at 450°C, they reached a zero creep state while the equilibrium stresses were measured. The annealed element layers were immiscible, and exhibited the column grain distribution and (111) preferred orientations. Based on the Josell model, the free energy of Ag/Co (111) interfaces at 450°C was found to be 1.02 ± 0.17 J/m2.
The thermal stress behavior of silicon/quartz bonded wafer pairs is examined. Sliding, debonding, and cracking are the observed mechanisms of relaxation. When the elastic energy due to the different thermal expansion coefficients of silicon and quartz exceeds the bonding energy, sliding will start and lead to a serrated curve on the curvature-versus-temperature graph. Finally, debonding will occur once the peeling stress exceeds the interface bonding strength. The debonded parts crack due to the overhang structure, and debonding-cracking processes continue during a further temperature increase. The stress behavior of the hydrogen-implantation induced layer splitting process (the so-called “Smart-Cut process”) of silicon/quartz pairs is also monitored in a stress measurement setup. It is observed that Smart-Cut process is a sudden process in agreement with the observations reported in the literature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.