We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ecosystem modeling, a pillar of the systems ecology paradigm (SEP), addresses questions such as, how much carbon and nitrogen are cycled within ecological sites, landscapes, or indeed the earth system? Or how are human activities modifying these flows? Modeling, when coupled with field and laboratory studies, represents the essence of the SEP in that they embody accumulated knowledge and generate hypotheses to test understanding of ecosystem processes and behavior. Initially, ecosystem models were primarily used to improve our understanding about how biophysical aspects of ecosystems operate. However, current ecosystem models are widely used to make accurate predictions about how large-scale phenomena such as climate change and management practices impact ecosystem dynamics and assess potential effects of these changes on economic activity and policy making. In sum, ecosystem models embedded in the SEP remain our best mechanism to integrate diverse types of knowledge regarding how the earth system functions and to make quantitative predictions that can be confronted with observations of reality. Modeling efforts discussed are the Century ecosystem model, DayCent ecosystem model, Grassland Ecosystem Model ELM, food web models, Savanna model, agent-based and coupled systems modeling, and Bayesian modeling.
There is increasing evidence for the health benefits of dietary nitrates including lowering blood pressure and enhancing cardiovascular health. Although commensal oral bacteria play an important role in converting dietary nitrate to nitrite, very little is known about the potential role of these bacteria in blood pressure regulation and maintenance of vascular tone. The main purpose of this review is to present the current evidence on the involvement of the oral microbiome in mediating the beneficial effects of dietary nitrate on vascular function and to identify sources of inter-individual differences in bacterial composition. A systematic approach was used to identify the relevant articles published on PubMed and Web of Science in English from January 1950 until September 2019 examining the effects of dietary nitrate on oral microbiome composition and association with blood pressure and vascular tone. To date, only a limited number of studies have been conducted, with nine in human subjects and three in animals focusing mainly on blood pressure. In general, elimination of oral bacteria with use of a chlorhexidine-based antiseptic mouthwash reduced the conversion of nitrate to nitrite and was accompanied in some studies by an increase in blood pressure in normotensive subjects. In conclusion, our findings suggest that oral bacteria may play an important role in mediating the beneficial effects of nitrate-rich foods on blood pressure. Further human intervention studies assessing the potential effects of dietary nitrate on oral bacteria composition and relationship to real-time measures of vascular function are needed, particularly in individuals with hypertension and those at risk of developing CVD.
PSR B1828–11 is a young pulsar once thought to be undergoing free precession and recently found instead to be switching magnetospheric states in tandem with spin-down changes. Here we show the two extreme states of the mode-changing found for this pulsar and comment briefly on its interpretation.
During 2016 February, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned, and carried out science observations with a phased array feed receiver system on the 64-m diameter Parkes radio telescope. Here, we demonstrate that the phased array feed can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the phased array feed can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of −31 dB can be achieved with a phased array feed beam offset from the centre of the field of view. We discuss the possibilities for using a phased array feed for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.
In 1998, Indian regulatory agencies approved the registration of CGA 184927, MON 37500, and fenoxaprop for postemergence control of isoproturon-resistant littleseed canarygrass. Herbicides used in rice and wheat before 1998 were generally mixed with sand or urea and were applied by hand. Foliar pesticide spray applications consisted primarily of insecticides and fungicides that were applied to high-value crops. These pesticides were often sprayed to runoff with backpack sprayers that were equipped with single hollow-cone or flood nozzles. Applicators walked through the fields, swinging the wands in sweeping motions resulting in uneven pesticide distribution and overapplication. The newly registered postemergence herbicides were applied with the same equipment and in the same fashion. After these applications, control of littleseed canarygrass was strikingly inconsistent, and the growers blamed the lack of control on the manufacturers. It was later clear that basic understanding of the application techniques was lacking. In response to this, an application training workshop was organized and conducted in India and Nepal in 2000. The workshops focused on teaching the participants how to use and fabricate multiple-nozzle booms, the importance of flat-fan nozzles, calibration, drift avoidance, and applicator safety. To date, approximately 3,000 farmers, extension agents, scientists, and industry representatives have attended more than 30 workshops. The participants were unanimously enthusiastic about the value of the workshops. Although simplistic, the adoption of this technology will significantly decrease the amounts of herbicides applied and will increase efficacy and efficiency.
Depressive symptoms are prominent psychopathological features of Huntington's disease (HD), making a negative impact on social functioning and well-being.
Method
We compared the frequencies of a history of depression, previous suicide attempts and current subthreshold depression between 61 early-stage HD participants and 40 matched controls. The HD group was then split based on the overall HD group's median Hospital Anxiety and Depression Scale-depression score into a group of 30 non-depressed participants (mean 0.8, s.d. = 0.7) and a group of 31 participants with subthreshold depressive symptoms (mean 7.3, s.d. = 3.5) to explore the neuroanatomy underlying subthreshold depressive symptoms in HD using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI).
Results
Frequencies of history of depression, previous suicide attempts or current subthreshold depressive symptoms were higher in HD than in controls. The severity of current depressive symptoms was also higher in HD, but not associated with the severity of HD motor signs or disease burden. Compared with the non-depressed HD group DTI revealed lower fractional anisotropy (FA) values in the frontal cortex, anterior cingulate cortex, insula and cerebellum of the HD group with subthreshold depressive symptoms. In contrast, VBM measures were similar in both HD groups. A history of depression, the severity of HD motor signs or disease burden did not correlate with FA values of these regions.
Conclusions
Current subthreshold depressive symptoms in early HD are associated with microstructural changes – without concomitant brain volume loss – in brain regions known to be involved in major depressive disorder, but not those typically associated with HD pathology.
The extraordinary DIBs observed toward Herschel 36 (Dahlstrom et al. 2013) have been analyzed (Oka et al. 2013). The analysis led us to a new way to classify the carriers of DIBs depending on whether the molecules are polar or non-polar. The pronounced Extended Tails toward Red (ETR) observed for DIBs λ5780.5, λ5797.1, and λ6613.6 are explained as due to radiative excitation of high rotational levels of polar carrier molecules in an environment with high radiative temperature ~90 K. Other DIBs (e.g., λ5849.8, λ6196.0, and λ6379.3) which do not show ETR are likely due to non-polar molecules. Model calculations taking into account the interplay of radiative and collisional effects reproduce the observed ETR using realistic molecular parameters if the radiative temperature is sufficiently high (~90 K). The calculation suggests that the carriers of DIBs with ETR are likely medium size molecules with 3 - 6 heavy atoms unless the radiative temperature is much higher.
We present the first results of a dedicated search for Diffuse Interstellar Bands that have profiles with FWHM > 6 Å. Broad DIBs have been noticed in past surveys using averages of multiple sight lines (e.g. Jenniskens & Désert, 1994), but careful detection, measurement, and cataloguing for individual sight lines has not been done since the pioneering work of Herbig (1995). We have initiated an observing campaign using the Apache Point Observatory in order to obtain low-resolution spectra to search for such broad DIBs and monitor their behaviour from star to star. A first sample of 21 stars with 0.3 < E(B-V) < 3.3 mag, along with 15 matched low-reddening stars, were observed with the APO/DIS B400 (R ~ 450) and R300 (R ~ 1000) gratings to obtain spectra having S/N > 500.
Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 Å are found in absorption along the line of sight to Herschel 36, an O star system next to the bright Hourglass nebula of the Hii region Messier 8. Excited lines of CH and CH+ are seen as well. We show that the region is very compact and itemize other anomalies of the gas. An infrared-bright star within 400 AU is noted. The combination of these effects produces anomalous DIBs, interpreted by Oka et al. (2013, see also this volume) as being caused predominantly by infrared pumping of rotational levels of relatively small molecules.
The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.
The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing-array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ∼ 10−9–10−8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper, we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.
The future of centimetre and metre-wave astronomy lies with the Square Kilometre Array (SKA), a telescope under development by a consortium of 17 countries that will be 50 times more sensitive than any existing radio facility. Most of the key science for the SKA will be addressed through large-area imaging of the Universe at frequencies from a few hundred MHz to a few GHz. The Australian SKA Pathfinder (ASKAP) is a technology demonstrator aimed in the mid-frequency range, and achieves instantaneous wide-area imaging through the development and deployment of phased-array feed systems on parabolic reflectors. The large field-of-view makes ASKAP an unprecedented synoptic telescope that will make substantial advances in SKA key science. ASKAP will be located at the Murchison Radio Observatory in inland Western Australia, one of the most radio-quiet locations on the Earth and one of two sites selected by the international community as a potential location for the SKA. In this paper, we outline an ambitious science program for ASKAP, examining key science such as understanding the evolution, formation and population of galaxies including our own, understanding the magnetic Universe, revealing the transient radio sky and searching for gravitational waves.
A ‘pulsar timing array’ (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of ‘global’ phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 ms pulsars is being observed at three radio-frequency bands, 50 cm (~700 MHz), 20 cm (~1400 MHz), and 10 cm (~3100 MHz), with observations at intervals of two to three weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters, and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For 10 of the 20 pulsars, rms timing residuals are less than 1 μs for the best band after fitting for pulse frequency and its first time derivative. Significant ‘red’ timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array and a PTA based on the Square Kilometre Array. We also present an ‘extended PPTA’ data set that combines PPTA data with earlier Parkes timing data for these pulsars.
The Parkes pulsar data archive currently provides access to 144044 data files obtained from observations carried out at the Parkes observatory since the year 1991. Around 105 files are from surveys of the sky, the remainder are observations of 775 individual pulsars and their corresponding calibration signals. Survey observations are included from the Parkes 70 cm and the Swinburne Intermediate Latitude surveys. Individual pulsar observations are included from young pulsar timing projects, the Parkes Pulsar Timing Array and from the PULSE@Parkes outreach program. The data files and access methods are compatible with Virtual Observatory protocols. This paper describes the data currently stored in the archive and presents ways in which these data can be searched and downloaded.
We report here on two years of timing of 168 pulsars using the Parkes radio telescope. The vast majority of these pulsars have spin-down luminosities in excess of 1034 erg s−1 and are prime target candidates to be detected in gamma-rays by the Fermi Gamma-Ray Space Telescope. We provide the ephemerides for the ten pulsars being timed at Parkes which have been detected by Fermi in its first year of operation. These ephemerides, in conjunction with the publicly available photonlist, can be used to generate gamma-ray profiles from the Fermi archive. We will make the ephemerides of any pulsars of interest available to the community upon request. In addition to the timing ephemerides, we present the parameters for 14 glitches which have occurred in 13 pulsars, seven of which have no previously known glitch history.The Parkes timing programme, in conjunction with Fermi observations, is expected to continue for at least the next four years.
Although there are many reports on the control of the pea aphid and its effect on the yield of peas, few are available on the effect of the aphid on the yield of alfalfa hay, particularly on irrigated land. The experiments of Cook and App (1956) and Franklin (1953) were done under climatic and edaphic conditions different from those encountered in southern Alberta. Outbreaks of the aphid occur only occasionally in Alberta, but in 1957 it was very abundant in some irrigated alfalfa fields. This is a report on the effect of the aphid on yields of alfalfa hay in an irrigated area in southern Alberta.
Sterility of grasses caused by a constricted brown region, usually in the upper internode, is commonly described as silver top because of the bleached appearance of the inflorescence. Hodgkiss (1908) reported that silver top was caused by the mite, Siteroptes graminum (Reuter), in conjunction with the fungus, Fusarium poae (Pk.) Wr. Brown et al. (1952) found that in the greenhouse several chlorinated hydrocarbons controlled S. graminum. Hardison et al. (1957) reported that S. graminum in combination with F. poae was of little importance in causing silver top of cultivated grasses in western Oregon. They suggested that two thrips of the genus Aptinothrips might be the primary cause. They recommended DDT or heptachlor applied in late April or early May. They also found that post-harvest burning reduced silver top.
The following behavioral patterns of three chalcidoid parasites, Monodontomerus obscurus, Pteromalus venustus, and Melittobia chalybii, were compared in the laboratory: feeding by adults, precopulatory routines, copulating, anesthetizing the host, ovipositing, mobility of the larvae, cannibalism among larvae, overwintering, diapause, life cycle, and the ability of a host to support a parasite.
Proton radiography using laser-driven sources has been developed as a diagnostic since the beginning of the decade, and applied successfully to a range of experimental situations. Multi-MeV protons driven from thin foils via the Target Normal Sheath Acceleration mechanism, offer, under optimal conditions, the possibility of probing laser-plasma interactions, and detecting electric and magnetic fields as well as plasma density gradients with ~ps temporal resolution and ~ 5–10 µm spatial resolution. In view of these advantages, the use of proton radiography as a diagnostic in experiments of relevance to Inertial Confinement Fusion is currently considered in the main fusion laboratories. This paper will discuss recent advances in the application of laser-driven radiography to experiments of relevance to Inertial Confinement Fusion. In particular we will discuss radiography of hohlraum and gasbag targets following the interaction of intense ns pulses. These experiments were carried out at the HELEN laser facility at AWE (UK), and proved the suitability of this diagnostic for studying, with unprecedented detail, laser-plasma interaction mechanisms of high relevance to Inertial Confinement Fusion. Non-linear solitary structures of relevance to space physics, namely phase space electron holes, have also been highlighted by the measurements. These measurements are discussed and compared to existing models.
DSM-IV and ICD-10 are atheoretical and largely descriptive. Although this achieves good reliability, the validity of diagnoses can be increased by an understanding of risk factors and other clinical features. In an effort to group mental disorders on this basis, five clusters have been proposed. We now consider the second cluster, namely neurodevelopmental disorders.
Method
We reviewed the literature in relation to 11 validating criteria proposed by a DSM-V Task Force Study Group.
Results
This cluster reflects disorders of neurodevelopment rather than a ‘childhood’ disorders cluster. It comprises disorders subcategorized in DSM-IV and ICD-10 as Mental Retardation; Learning, Motor, and Communication Disorders; and Pervasive Developmental Disorders. Although these disorders seem to be heterogeneous, they share similarities on some risk and clinical factors. There is evidence of a neurodevelopmental genetic phenotype, the disorders have an early emerging and continuing course, and all have salient cognitive symptoms. Within-cluster co-morbidity also supports grouping these disorders together. Other childhood disorders currently listed in DSM-IV share similarities with the Externalizing and Emotional clusters. These include Conduct Disorder, Attention Deficit Hyperactivity Disorder and Separation Anxiety Disorder. The Tic, Eating/Feeding and Elimination disorders, and Selective Mutisms were allocated to the ‘Not Yet Assigned’ group.
Conclusion
Neurodevelopmental disorders meet some of the salient criteria proposed by the American Psychiatric Association (APA) to suggest a classification cluster.