We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
Starting from the assumption that saturation of plasma turbulence driven by temperature-gradient instabilities in fusion plasmas is achieved by a local energy cascade between a long-wavelength outer scale, where energy is injected into the fluctuations, and a small-wavelength dissipation scale, where fluctuation energy is thermalised by particle collisions, we formulate a detailed phenomenological theory for the influence of perpendicular flow shear on magnetised-plasma turbulence. Our theory introduces two distinct regimes, called the weak-shear and strong-shear regimes, each with its own set of scaling laws for the scale and amplitude of the fluctuations and for the level of turbulent heat transport. We discover that the ratio of the typical radial and poloidal wavenumbers of the fluctuations (i.e. their aspect ratio) at the outer scale plays a central role in determining the dependence of the turbulent transport on the imposed flow shear. Our theoretical predictions are found to be in excellent agreement with numerical simulations of two paradigmatic models of fusion-relevant plasma turbulence: (i) an electrostatic fluid model of slab electron-scale turbulence, and (ii) Cyclone-base-case gyrokinetic ion-scale turbulence. Additionally, our theory envisions a potential mechanism for the suppression of electron-scale turbulence by perpendicular ion-scale flows based on the role of the aforementioned aspect ratio of the electron-scale fluctuations.
A quasi-linear reduced transport model is developed from a database of high-$\beta$ electromagnetic nonlinear gyrokinetic simulations performed with spherical tokamak for energy production (STEP) relevant parameters. The quasi-linear model is fully electromagnetic and accounts for the effect of equilibrium flow shear using a novel approach. Its flux predictions are shown to agree quantitatively with predictions from local nonlinear gyrokinetic simulations across a broad range of STEP-relevant local equilibria. This reduced transport model is implemented in the T3D transport solver that is used to perform the first flux-driven simulations for STEP to account for transport from hybrid kinetic ballooning mode turbulence, which dominates over a wide region of the core plasma. Nonlinear gyrokinetic simulations of the final transport steady state from T3D return turbulent fluxes that are consistent with the reduced model, indicating that the quasi-linear model may also be appropriate for describing the transport steady state. Within the assumption considered here, our simulations support the existence of a transport steady state in STEP with a fusion power comparable to that in the burning flat top of the conceptual design, but do not demonstrate how this state can be accessed.
Ligula (Cestoda: Pseudophyllidea) infections in gudgeon (Gobio gobio) and roach (Rutilus rutilus) differ markedly in the pathology that is observed in the host, particularly with respect to a tissue response and the extent of inhibition of gonadal development. The entire internal transcribed spacer (ITS) region (ITS-1, 5.8S and ITS-2) and the large subunit domains D1–D3 were sequenced and compared in parasites from these fish from Lough Neagh, Northern Ireland, together with a single specimen from minnow (Phoxinus phoxinus) from Wales. Sufficient differences were observed between parasites from R. rutilus and G. gobio to support the suggestion that they may represent different strains/species. In contrast, Ligula from P. phoxinus closely resembled those from R. rutilus. Ligula infections in G. gobio were recorded prior to the introduction of R. rutilus. The co-existence of separate strains or species of Ligula in Lough Neagh probably resulted from the introduction of R. rutilus to these waters, correlated with an increase in the number of great crested grebes (Podiceps cristatus).
The composition and diversity of the total and intestinal component and infra-communities were determined in eels Anguilla anguilla from three shallow lagoons on the Adriatic coast of Italy to determine whether the helminth communities would differ in composition and structure from those in eels from lagoons on the Tyrrhenian coast. The lagoons differed in respect of their management regimes and the extent of freshwater influx. Both freshwater and marine species of helminths were found in the eels in all three lagoons, but the freshwater component was richer in Valle Figheri. A suite of three digenean eel specialist species occurred in all three lagoons, of which any two members dominated each community. This conferred a high degree of similarity between the communities of the three lagoons. The same three species also dominated helminth communities in eels in lagoons along the Tyrrhenian coast of Italy, and compositional similarity levels were similar within and between western and eastern groups. Species richness was higher in the component communities of the eels of the Adriatic lagoons when compared to the Tyrrhenian ones, but diversity and dominance indices were of a similar order of magnitude and range. Intestinal helminth communities were richer and more diverse in two of the Adriatic lagoons because the proportion of eels with zero or one helminth species was, unusually, in the minority. It was nevertheless concluded that infracommunity structure was similar in eels from both western and eastern lagoons and that the hypothesis that it would differ in Adriatic lagoons could not be supported. The findings provide further evidence of the similarity in composition and structure of helminth communities in eels from coastal lagoons throughout Europe.
Public decision-makers incorporate algorithm decision aids, often developed by private businesses, into the policy process, in part, as a method for justifying difficult decisions. Ethicists have worried that over-trust in algorithm advice and concerns about punishment if departing from an algorithm’s recommendation will result in over-reliance and harm democratic accountability. We test these concerns in a set of two pre-registered survey experiments in the judicial context conducted on three representative U.S. samples. The results show no support for the hypothesized blame dynamics, regardless of whether the judge agrees or disagrees with the algorithm. Algorithms, moreover, do not have a significant impact relative to other sources of advice. Respondents who are generally more trusting of elites assign greater blame to the decision-maker when they disagree with the algorithm, and they assign more blame when they think the decision-maker is abdicating their responsibility by agreeing with an algorithm.
Despite associations between hypoglycemia and cognitive performance using cross-sectional and experimental methods (e.g., Insulin clamp studies), few studies have evaluated this relationship in a naturalistic setting. This pilot study utilizes an EMA study design in adults with T1D to examine the impact of hypoglycemia and hyperglycemia, measured using CGM, on cognitive performance, measured via ambulatory assessment.
Participants and Methods:
Twenty adults with T1D (mean age 38.9 years, range 26-67; 55% female; 55% bachelor’s degree or higher; mean HbA1c = 8.3%, range 5.4% - 12.5%), were recruited from the Joslin Diabetes Center at SUNY Upstate Medical University. A blinded Dexcom G6 CGM was worn during everyday activities while completing 3-6 daily EMAs using personal smartphones. EMAs were delivered between 9 am and 9 pm, for 15 days. EMAs included 3 brief cognitive tests developed by testmybrain.org and validated for brief mobile administration (Gradual Onset CPT d-prime, Digit Symbol Matching median reaction time, Multiple Object Tracking percent accuracy) and self-reported momentary negative affect. Day-level average scores were calculated for the cognitive and negative affect measures. Hypoglycemia and hyperglycemia were defined as the percentage of time spent with a sensor glucose value <70 mg/dL or > 180 mg/dL, respectively. Daytime (8 am to 9 pm) and nighttime (9 pm to 8 am) glycemic excursions were calculated separately. Multilevel models estimated the between- and within-person association between the night prior to, or the same day, time spent in hypoglycemia or hyperglycemia and cognitive performance (each cognitive test was modeled separately). To evaluate the effect of between-person differences, person-level variables were calculated as the mean across the study and grand-mean centered. To evaluate the effect of within-person fluctuations, day-level variables were calculated as deviations from these person-level means.
Results:
Within-person fluctuations in nighttime hypoglycemia were associated with daytime processing speed. Specifically, participants who spent a higher percentage of time in hypoglycemia than their average percentage the night prior to assessment performed slower than their average performance on the processing speed test (Digit Symbol Matching median reaction time, b = 94.16, p = 0.042), while same day variation in hypoglycemia was not associated with variation in Digit Symbol Matching performance. This association remained significant (b = 97.46, p = 0.037) after controlling for within-person and between-person effects of negative affect. There were no significant within-person associations between time spent in hyperglycemia and Digit Symbol Matching, nor day/night hypoglycemia or hyperglycemia and Gradual Onset CPT or Multiple Object Tracking.
Conclusions:
Our findings from this EMA study suggest that when individuals with T1D experience more time in hypoglycemia at night (compared to their average), they have slower processing speed the following day, while same day hypoglycemia and hyperglycemia does not similarly impact processing speed performance. These results showcase the power of intensive longitudinal designs using ambulatory cognitive assessment to uncover novel determinants of cognitive variation in real world settings that have direct clinical applications for optimizing cognitive performance. Future research with larger samples is needed to replicate these findings.
The Ontario Review Board (ORB) makes and reviews dispositions that limit the freedoms of individuals found not criminally responsible (NCR) due to a “mental disorder.” Their dispositions must be responsive to the risk NCR individuals pose to the public. To assess how risk is measured, the authors studied twenty-six publicly accessible court files pertaining to the appeal of ORB dispositions. The authors studied hospital reports, the ORB’s dispositions, and transcripts of ORB hearings found in the court files. In this paper, the authors draw on institutional ethnography and critical legal theories of jurisdiction to analyze how certain citational practices—namely citation of closely related statutes and the ORB’s procedures—participate in structuring the ORB’s analysis of risk. The authors argue that risk becomes legible to participants in the NCR process through the intertextual mediation of these citations, which legitimize and naturalize the NCR individuals’ dependence on forensic institutions.
Secure forensic hospital settings provide care and treatment to mentally disordered offenders with a history of serious violence. Most modern forensic hospitals operate a system of stratified therapeutic security, where patients are placed on the internal care pathway according to individual risks and needs. Unfortunately, at times patients move ‘backwards’ from a unit of lower to a unit with higher therapeutic security. This is a challenge to manage from an individual patient and service perspective.
Objectives
The aim of this study was to analyse backwards moves along the care-pathway within a complete national cohort of forensic in-patients in Ireland over a five-year period. We aimed to clarify the reasons for these moves and ascertain if they were linked to mental illness, security or other issues.
Methods
A naturalistic retrospective five-year observational cohort study was completed. All in-patients in the Central Mental Hospital, Dundrum, Ireland or associated high support hostels between January 2016 and January 2021 were included (60 months). Demographic data, data pertaining to diagnosis, data pertaining to backwards moves and reasons for those moves were gathered. Data was gathered as part of the Dundrum Forensic Redevelopment Evaluation study (D-FOREST study).
Results
A total of n=231 patients were included; the majority (n= 203; 87.9%) were male. The most common diagnosis was schizophrenia (64.1%), followed by schizoaffective disorder (12.6%), bipolar affective disorder (4.8%) and autistic spectrum disorder (3.5%). Mean age at admission was 35.9 years, SD 9.5.
Over the 60-month period, a total of 93 backwards moves relating to 50 patients occurred. Reasons for backward moves included deteriorating mental state (8.7%), assaults (4.3%), challenging behaviour (4.3%), security (1%) and others. Binary logistic regression demonstrated that lacking capacity to consent to medication (Odds ratio 0.352, 95%CI 0.198-0.627, p<0.001) and higher (worse) scores on HCR-20 Historical scale (Odds ratio 1.13, 95%CI 1.01-1.27, p=0.035) were associated with backwards moves, when adjusting for age and Dundrum-1 need for therapeutic security scores.
Conclusions
Backwards care pathway moves are a major issue in forensic hospitals both nationally and internationally. We were surprised at the strength of association between lacking capacity to consent and backwards moves. Understanding backwards moves will assist in supporting patients and minimising length of stay.
Disclosure of Interest
L. Jordan Grant / Research support from: This study was funded by the Health Service Executive for the Republic of Ireland as part of the Dundrum Forensic Redevelopment Evaluation (D-FOREST) study, G. Crudden: None Declared, D. Mohan: None Declared, H. Kennedy: None Declared, M. Davoren: None Declared
Despite replicated cross-sectional evidence of aberrant levels of peripheral inflammatory markers in individuals with major depressive disorder (MDD), there is limited literature on associations between inflammatory tone and response to sequential pharmacotherapies.
Objectives
To assess associations between plasma levels of pro-inflammatory markers and treatment response to escitalopram and adjunctive aripiprazole in adults with MDD.
Methods
In a 16-week open-label clinical trial, 211 participants with MDD were treated with escitalopram 10– 20 mg daily for 8 weeks. Responders continued on escitalopram while non-responders received adjunctive aripiprazole 2–10 mg daily for 8 weeks. Plasma levels of pro-inflammatory markers – C-reactive protein, Interleukin (IL)-1β, IL-6, IL-17, Interferon gamma (IFN)-Γ, Tumour Necrosis Factor (TNF)-α, and Chemokine C–C motif ligand-2 (CCL-2) - measured at baseline, and after 2, 8 and 16 weeks were included in logistic regression analyses to assess associations between inflammatory markers and treatment response.
Results
Pre-treatment levels of IFN-Γ and CCL-2 were significantly higher in escitalopram non-responders compared to responders. Pre-treatment IFN-Γ and CCL-2 levels were significantly associated with a lower of odds of response to escitalopram at 8 weeks. Increases in CCL-2 levels from weeks 8 to 16 in escitalopram non-responders were significantly associated with higher odds of non-response to adjunctive aripiprazole at week 16.
Conclusions
Pre-treatment levels of IFN-Γ and CCL-2 were predictive of response to escitalopram. Increasing levels of these pro-inflammatory markers may predict non-response to adjunctive aripiprazole. These findings require validation in independent clinical populations.
Many clinical trials leverage real-world data. Typically, these data are manually abstracted from electronic health records (EHRs) and entered into electronic case report forms (CRFs), a time and labor-intensive process that is also error-prone and may miss information. Automated transfer of data from EHRs to eCRFs has the potential to reduce data abstraction and entry burden as well as improve data quality and safety.
Methods:
We conducted a test of automated EHR-to-CRF data transfer for 40 participants in a clinical trial of hospitalized COVID-19 patients. We determined which coordinator-entered data could be automated from the EHR (coverage), and the frequency with which the values from the automated EHR feed and values entered by study personnel for the actual study matched exactly (concordance).
Results:
The automated EHR feed populated 10,081/11,952 (84%) coordinator-completed values. For fields where both the automation and study personnel provided data, the values matched exactly 89% of the time. Highest concordance was for daily lab results (94%), which also required the most personnel resources (30 minutes per participant). In a detailed analysis of 196 instances where personnel and automation entered values differed, both a study coordinator and a data analyst agreed that 152 (78%) instances were a result of data entry error.
Conclusions:
An automated EHR feed has the potential to significantly decrease study personnel effort while improving the accuracy of CRF data.
In this era of spatially resolved observations of planet-forming disks with Atacama Large Millimeter Array (ALMA) and large ground-based telescopes such as the Very Large Telescope (VLT), Keck, and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is an infrared space mission concept developed jointly by Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA) to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage $10{-}220\,\mu\mathrm{m}$, (2) the high line detection sensitivity of $(1{-}2) \times 10^{-19}\,\mathrm{W\,m}^{-2}$ with $R \sim 2\,000{-}5\,000$ in the far-IR (SAFARI), and $10^{-20}\,\mathrm{W\,m}^{-2}$ with $R \sim 29\,000$ in the mid-IR (SPICA Mid-infrared Instrument (SMI), spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet-forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid-state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. We demonstrate that the SPICA mission concept would allow us to achieve the above ambitious science goals through large surveys of several hundred disks within $\sim\!2.5$ months of observing time.
Secure forensic mental health services have a dual role, to treat mental illness and reduce violent recidivism. Those admitted to secure forensic services have a significant history of violence and treatment needs in multiple domains including psychiatric illness, violence and other areas such as substance misuse and physical health.
Objectives
The aim of this study was to ascertain if the units in a medium secure forensic hospital are stratified according to individual risks and needs. We also aimed to clarify if there were differences in the symptom level, risks and needs of those with and without community leave and to clarify the risks and needs of the female patients and ID patients.
Methods
This is a cross sectional study a cohort of patients (n=138) in a secure forensic hospital.
Results
There was a total of 138 patients, the majority of whom were male (n=123, 89.1%). The most common diagnosis was schizophrenia (n=99, 71.7%). Placements in the care pathway of the medium secure forensic hospital were associated with level of symptomatology (PANSS positive), dynamic violence risk (F=26.880,P<0.001), DUNDRUM-3 therapeutic programme completion (F=44.067,P<0.001), and DUNDRUM 4 recovery (F=59.629,P<0.001). Patients with community leave had better scores than those without leave on violence risk (F=77.099, P<0.001), therapeutic programme completion (F=116.072, P<0.001) and recovery (F=172.211, P<0.001).
Conclusions
Stratifying secure forensic psychiatric hospitals according to individual risks and needs provides in-patient care in the least restrictive setting appropriate for individuals, however niche groups such as female forensic patients and ID patients may need special consideration.
We have adapted the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Science Pipelines to process data from the Gravitational-wave Optical Transient Observer (GOTO) prototype. In this paper, we describe how we used the LSST Science Pipelines to conduct forced photometry measurements on nightly GOTO data. By comparing the photometry measurements of sources taken on multiple nights, we find that the precision of our photometry is typically better than 20 mmag for sources brighter than 16 mag. We also compare our photometry measurements against colour-corrected Panoramic Survey Telescope and Rapid Response System photometry and find that the two agree to within 10 mmag (1$\sigma$) for bright (i.e., $\sim 14{\rm th} \mathrm{mag}$) sources to 200 mmag for faint (i.e., $\sim 18{\rm th} \mathrm{mag}$) sources. Additionally, we compare our results to those obtained by GOTO’s own in-house pipeline, gotophoto, and obtain similar results. Based on repeatability measurements, we measure a $5\sigma$L-band survey depth of between 19 and 20 magnitudes, depending on observing conditions. We assess, using repeated observations of non-varying standard Sloan Digital Sky Survey stars, the accuracy of our uncertainties, which we find are typically overestimated by roughly a factor of two for bright sources (i.e., $< 15{\rm th} \mathrm{mag}$), but slightly underestimated (by roughly a factor of 1.25) for fainter sources ($> 17{\rm th} \mathrm{mag}$). Finally, we present lightcurves for a selection of variable sources and compare them to those obtained with the Zwicky Transient Factory and GAIA. Despite the LSST Software Pipelines still undergoing active development, our results show that they are already delivering robust forced photometry measurements from GOTO data.
The behaviour of a collisional plasma that is optically thin to cyclotron radiation is considered, and the distribution functions accessible to it on the various time scales in the system are calculated. Particular attention is paid to the limit in which the collision time exceeds the radiation emission time, making the electron distribution function strongly anisotropic. Unusually for plasma physics, the collision operator can nevertheless be calculated analytically although the plasma is far from Maxwellian. The rate of radiation emission is calculated and found to be governed by the collision frequency multiplied by a factor that only depends logarithmically on plasma parameters.
The behaviour of a strongly magnetised collisional electron–positron plasma that is optically thin to cyclotron radiation is considered, and the distribution functions accessible to it on the various timescales in the system are calculated. Particular attention is paid to the limit in which the collision time exceeds the radiation emission time, making the electron distribution function strongly anisotropic. Indeed, these are the exact conditions likely to be attained in the first laboratory electron–positron plasma experiments currently being developed, which will typically have very low densities and be confined in very strong magnetic fields. The constraint of strong magnetisation adds an additional complication in that long-range Coulomb collisions, which are usually negligible, must now be considered. A rigorous collision operator for these long-range collisions has never been written down. Nevertheless, we show that the collisional scattering can be accounted for without knowing the explicit form of this collision operator. The rate of radiation emission is calculated and it is found that the loss of energy from the plasma is proportional to the parallel collision frequency multiplied by a factor that only depends logarithmically on plasma parameters. That is, this is a self-accelerating process, meaning that the bulk of the energy will be lost in a few collision times. We show that in a simple case, that of straight field-line geometry, there are no unstable drift waves in such plasmas, despite being far from Maxwellian.