We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the behaviour of shallow water waves propagating over bathymetry that varies periodically in one direction and is constant in the other. Plane waves travelling along the constant direction are known to evolve into solitary waves, due to an effective dispersion. We apply multiple-scale perturbation theory to derive an effective constant-coefficient system of equations, showing that the transversely averaged wave approximately satisfies a Boussinesq-type equation, while the lateral variation in the wave is related to certain integral functions of the bathymetry. Thus the homogenized equations not only accurately describe these waves but also predict their full two-dimensional shape in some detail. Numerical experiments confirm the good agreement between the effective equations and the variable-bathymetry shallow water equations.
We study the flow of water waves over bathymetry that varies periodically along one direction. We derive a linearized, homogenized model and show that the periodic bathymetry induces an effective dispersion, distinct from the dispersion inherently present in water waves. We relate this dispersion to the well-known effective dispersion introduced by changes in the bathymetry in non-rectangular channels. Numerical simulations using the (non-dispersive) shallow water equations reveal that a balance between this effective dispersion and nonlinearity can create solitary waves. We derive a Korteweg–de Vries-type equation that approximates the behaviour of these waves in the weakly nonlinear regime. We show that, depending on geometry, dispersion due to bathymetry can be much stronger than traditional water wave dispersion and can prevent wave breaking in strongly nonlinear regimes. Computational experiments using depth-averaged water wave models confirm the analysis and suggest that experimental observation of these solitary waves is possible.
We study the radius of absolute monotonicity $R$ of rational functions with numerator and denominator of degree $s$ that approximate the exponential function to order $p$. Such functions arise in the application of implicit $s$-stage, order $p$ Runge–Kutta methods for initial value problems, and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with $p=2$ and $R>2s$, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with two or three parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge–Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.