We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A model in the form of a Markov chain is constructed to mimic variations in the human sex ratio. It is illustrated by simulation. The equilibrium distribution is shown to be a simple modification of the binomial distribution. This enables an easy calculation of the variation in sex ratio which could be expected in small populations.
G. H. Hardy (1877–1947) and Wilhelm Weinberg (1862–1937) had very different lives, but in the minds of geneticists, the two are inextricably linked through the ownership of an apparently simple law called the Hardy–Weinberg law. We demonstrate that the simplicity is more apparent than real. Hardy derived the well-known trio of frequencies {q2, 2pq, p2} with a concise demonstration, whereas for Weinberg it was the prelude to an ingenious examination of the inheritance of twinning in man. Hardy's recourse to an identity relating to the distribution of types among offspring following random mating, rather than an identity relating to the mating matrix, may be the reason why he did not realize that Hardy–Weinberg equilibrium can be reached and sustained with non-random mating. The phrase ‘random mating’ always comes up in reference to the law. The elusive nature of this phrase is part of the reason for the misunderstandings that occur but also because, as we explain, mathematicians are able to use it in a different way from the man-in-the-street. We question the unthinking appeal to random mating as a model and explanation of the distribution of genotypes even when they are close to Hardy–Weinberg proportions. Such sustained proportions are possible under non-random mating.
A new beam-combination and detection system has been installed in the Sydney University Stellar Interferometer working at the red end of the visual spectrum (λλ 500–950 nm) to complement the existing blue-sensitive system (λλ 430–520 nm) and to provide an increase in sensitivity. Dichroic beam-splitters have been introduced to allow simultaneous observations with both spectral systems, albeit with some restriction on the spectral range of the longer wavelength system (λλ 550–760 nm). The blue system has been upgraded to allow remote selection of wavelength and spectral bandpass, and to enable simultaneous operation with the red system with the latter providing fringe-envelope tracking. The new system and upgrades are described and examples of commissioning tests presented. As an illustration of the improvement in performance the measurement of the angular diameter of the southern F supergiant δ CMa is described and compared with previous determinations.
We derive identities for the probability that at least a1 and at least a2, and for the probability that exactly a1 and exactly a2, out of n and N events occur (1 ≤ a1 ≤ n, 1 ≤ a2 ≤ N). From this, we produce multivariate permutation hybrid upper bounds, and a multivariate Bonferroni-type upper bound which includes Galambos and Xu's [2] optimal result. The methodology generalizes that of Hoppe and Seneta [3, §5]. A numerical example is given.
The paper characterizes matrices which have a given system of vectors orthogonal with respect to a given probability distribution as its right eigenvectors. Results of Hoare and Rahman are unified in this context, then all matrices with a given orthogonal polynomial system as right eigenvectors under the constraint a0j = 0 for j ≥ 2 are specified. The only stochastic matrices P = {pij} satisfying p00 + p01 = 1 with the Hahn polynomials as right eigenvectors have the form of the Moran mutation model.
Technology developed in a predecessor paper (Chen and Seneta (1996)) is applied to provide, in a unified manner, a sharpening of bivariate Bonferroni-type bounds on P(v1≥r, v2≥u) obtained by Galambos and Lee (1992; upper bound) and Chen and Seneta (1986; lower bound).
To bound the probability of a union of n events from a single set of events, Bonferroni inequalities are sometimes used. There are sharper bounds which are called Sobel–Uppuluri–Galambos inequalities. When two (or more) sets of events are involved, bounds are considered on the probability of intersection of several such unions, one union from each set. We present a method for unified treatment of bivariate lower and upper bounds in this note. The lower bounds obtained are new and at least as good as lower bounds appearing in the literature so far. The upper bounds coincide with existing bivariate Sobel–Uppuluri–Galambos type upper bounds derived by the method of indicator functions. A numerical example is given to illustrate that the new lower bounds can be strictly better than existing ones.
We derive multivariate Sobel–Uppuluri–Galambos-type lower bounds for the probability that at least a1 and at least a2, and for the probability that exactly a1 and a2, out of n and N events, occur. The lower bound presented here reduces to a sharper bound than that of Galambos and Lee (1992). Our approach is by way of indicator functions and bivariate binomial moments. A new concept, marginal Bonferroni summation, is introduced in this paper.
We consider the exact distribution of the number of peaks in a random permutation of the integers 1, 2, ···, n. This arises from a test of whether n successive observations from a continuous distribution are i.i.d. The Eulerian numbers, which figure in the p.g.f., are then shown to provide a link between the simpler problem of ascents (which has been thoroughly analysed) and both our problem of peaks and similar problems on the circle. This link then permits easy deduction of certain general properties, such as linearity in n of the cumulants, in the more complex settings. Since the focus of the paper is on exact distributional results, a uniform bound on the deviation from the limiting normal is included. A secondary purpose of the paper is synthesis, beginning with the more familiar setting of peaks and troughs.
In the theory of homogeneous Markov chains, states are classified according to their connectivity to other states and this classification leads to a classification of the Markov chains themselves. In this paper we classify Markov set-chains analogously, particularly into ergodic, regular, and absorbing Markov set-chains. A weak law of large numbers is developed for regular Markov set-chains. Examples are used to illustrate analysis of behavior of Markov set-chains.
Quasi-stationary distributions are considered in their own right, and from the standpoint of finite approximations, for absorbing birth-death processes. Results on convergence of finite quasi-stationary distributions and a stochastic bound for an infinite quasi-stationary distribution are obtained. These results are akin to those of Keilson and Ramaswamy (1984). The methodology is a synthesis of Good (1968) and Cavender (1978).
It is shown that an easily calculated ergodicity coefficient of a stochastic matrix P with a unique stationary distribution πT, may be used to assess sensitivity of πT to perturbation of P.
We consider the problem of approximating the stationary distribution of a positive-recurrent Markov chain with infinite transition matrix P, by stationary distributions computed from (n × n) stochastic matrices formed by augmenting the entries of the (n × n) northwest corner truncations of P, as n →∞.
We derive the Sobel–Uppuluri and Galambos-type extensions of the Bonferroni bounds, and further extensions of the same nature, as consequences of a single non-probabilistic inequality. The methodology follows that of Galambos.
A class of fitness matrices whose parameters may be varied to give differing stability structure is shown by Chebyshev&s covariance inequality to possess a variance lower bound for the change in mean fitness.
A necessary and sufficient set of conditions is given for the finiteness of a general moment of the R -invariant measure of an R -recurrent substochastic matrix. The conditions are conceptually related to Foster's theorem. The result extends that of [8], and is illustratively applied to the single and multitype subcritical Galton–Watson process to find conditions for Yaglom-type conditional limit distributions to have finite moments.
Limit theorems for the Galton–Watson process with immigration (BPI), where immigration is not permitted when the process is in state 0 (so that this state is absorbing), have been studied for the subcritical and supercritical cases by Seneta and Tavaré (1983). It is pointed out here that, apart from a change of context, the corresponding theorem in the critical case has been obtained by Vatutin (1977). Extensions which follow from a more general form of initial distribution are sketched, including a new form of limit result (7).
We prove a conjecture of Arnold (1968) which simplifies the determination of an optimal bound on absorption probability originally due to Moran (1960).
The Galton-Watson process with immigration which is time-homogeneous but not permitted when the process is in state 0 (so that this state is absorbing) is briefly studied in the subcritical and supercritical cases. Results analogous to those for the ordinary Galton-Watson process are found to hold. Partly-new techniques are required, although known end-results on the standard process with and without immigration are used also. In the subcritical case a new parameter is found to be relevant, replacing to some extent the criticality parameter.
A simple technique for obtaining bounds in terms of means and variances for the expectations of certain functions of random variables in a given class is examined. The bounds given are sharp in the sense that they are attainable by at least one random variable in the class. This technique is applied to obtain bounds for moment generating functions, the coefficient of skewness and parameters associated with branching processes. In particular an improved lower bound for the Malthusian parameter in an age-dependent branching process is derived.